NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities

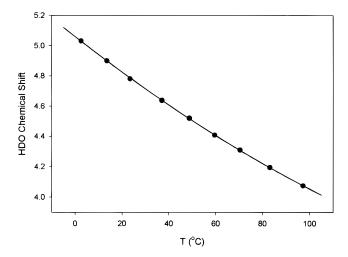
Hugo E. Gottlieb,* Vadim Kotlyar, and Abraham Nudelman*

Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel

Received June 27, 1997

In the course of the routine use of NMR as an aid for organic chemistry, a day-to-day problem is the identification of signals deriving from common contaminants (water, solvents, stabilizers, oils) in less-than-analytically-pure samples. This data may be available in the literature, but the time involved in searching for it may be considerable. Another issue is the concentration dependence of chemical shifts (especially ¹H); results obtained two or three decades ago usually refer to much more concentrated samples, and run at lower magnetic fields, than today's practice.

We therefore decided to collect ¹H and ¹³C chemical shifts of what are, in our experience, the most popular "extra peaks" in a variety of commonly used NMR solvents, in the hope that this will be of assistance to the practicing chemist.


Experimental Section

NMR spectra were taken in a Bruker DPX-300 instrument (300.1 and 75.5 MHz for ¹H and ¹³C, respectively). Unless otherwise indicated, all were run at room temperature (24 ± 1 °C). For the experiments in the last section of this paper, probe temperatures were measured with a calibrated Eurotherm 840/T digital thermometer, connected to a thermocouple which was introduced into an NMR tube filled with mineral oil to approximately the same level as a typical sample. At each temperature, the D₂O samples were left to equilibrate for at least 10 min before the data were collected.

In order to avoid having to obtain hundreds of spectra, we prepared seven stock solutions containing approximately equal amounts of several of our entries, chosen in such a way as to prevent intermolecular interactions and possible ambiguities in assignment. Solution 1: acetone, tert-butyl methyl ether, dimethylformamide, ethanol, toluene. Solution 2: benzene, dimethyl sulfoxide, ethyl acetate, methanol. Solution 3: acetic acid, chloroform, diethyl ether, 2-propanol, tetrahydrofuran. Solution 4: acetonitrile, dichloromethane, dioxane, n-hexane, HMPA. Solution 5: 1,2-dichloroethane, ethyl methyl ketone, n-pentane, pyridine. Solution 6: tert-butyl alcohol, BHT, cyclohexane, 1,2-dimethoxyethane, nitromethane, silicone grease, triethylamine. Solution 7: diglyme, dimethylacetamide, ethylene glycol, "grease" (engine oil). For D_2O . Solution 1: acetone, tert-butyl methyl ether, dimethylformamide, ethanol, 2-propanol. Solution 2: dimethyl sulfoxide, ethyl acetate, ethylene glycol, methanol. Solution 3: acetonitrile, diglyme, dioxane, HMPA, pyridine. Solution 4: 1,2-dimethoxyethane, dimethylacetamide, ethyl methyl ketone, triethylamine. Solution 5: acetic acid, tertbutyl alcohol, diethyl ether, tetrahydrofuran. In D_2O and CD₃OD nitromethane was run separately, as the protons exchanged with deuterium in presence of triethylamine.

Results

Proton Spectra (Table 1). A sample of 0.6 mL of the solvent, containing 1 μ L of TMS,¹ was first run on its own. From this spectrum we determined the chemical shifts of the solvent residual peak² and the water peak. It should be noted that the latter is quite temperature-

Figure 1. Chemical shift of *H*DO as a function of temperature.

dependent (*vide infra*). Also, any potential hydrogenbond acceptor will tend to shift the water signal downfield; this is particularly true for nonpolar solvents. In contrast, in *e.g.* DMSO the water is already strongly hydrogen-bonded to the solvent, and solutes have only a negligible effect on its chemical shift. This is also true for D₂O; the chemical shift of the residual HDO is very temperature-dependent (*vide infra*) but, maybe counterintuitively, remarkably solute (and pH) independent.

We then added 3 μ L of one of our stock solutions to the NMR tube. The chemical shifts were read and are presented in Table 1. Except where indicated, the coupling constants, and therefore the peak shapes, are essentially solvent-independent and are presented only once.

For D_2O as a solvent, the accepted reference peak (δ = 0) is the methyl signal of the sodium salt of 3-(trimethvlsilyl)propanesulfonic acid; one crystal of this was added to each NMR tube. This material has several disadvantages, however: it is not volatile, so it cannot be readily eliminated if the sample has to be recovered. In addition, unless one purchases it in the relatively expensive deuterated form, it adds three more signals to the spectrum (methylenes 1, 2, and 3 appear at 2.91, 1.76, and 0.63 ppm, respectively). We suggest that the residual HDO peak be used as a secondary reference; we find that if the effects of temperature are taken into account (vide infra), this is very reproducible. For D_2O , we used a different set of stock solutions, since many of the less polar substrates are not significantly watersoluble (see Table 1). We also ran sodium acetate and sodium formate (chemical shifts: 1.90 and 8.44 ppm, respectively).

Carbon Spectra (Table 2). To each tube, 50 μ L of the stock solution and 3 μ L of TMS¹ were added. The solvent chemical shifts³ were obtained from the spectra containing the solutes, and the ranges of chemical shifts

⁽¹⁾ For recommendations on the publication of NMR data, see: IUPAC Commission on Molecular Structure and Spectroscopy. *Pure Appl. Chem.* **1972**, *29*, 627; **1976**, *45*, 217.

⁽²⁾ *Le.*, the signal of the proton for the isotopomer with one less deuterium than the perdeuterated material, *e.g.*, *CHC*l₃ in CDCl₃ or C_6D_5H in C_6D_6 . Except for CHCl₃, the splitting due to J_{HD} is typically observed (to a good approximation, it is 1/6.5 of the value of the corresponding J_{HH}). For CHD₂ groups (deuterated acetone, DMSO, acetonitrile), this signal is a 1:2:3:2:1 quintet with a splitting of *ca.* 2 Hz.

⁽³⁾ In contrast to what was said in note 2, in the 13 C spectra the solvent signal is due to the perdeuterated isotopomer, and the one-bond couplings to deuterium are always observable (*ca.* 20–30 Hz).

Table 1. ¹H NMR Data

	Table 1. ¹ H NMR Data									
	proton	mult	$CDCl_3$	(CD ₃) ₂ CO	$(CD_3)_2SO$	C_6D_6	CD ₃ CN	CD ₃ OD	D ₂ O	
solvent residual peak			7.26	2.05	2.50	7.16	1.94	3.31	4.79	
H ₂ O		S	1.56	2.84^{a}	3.33 ^a	0.40	2.13	4.87		
acetic acid	CH_3	S	2.10	1.96	1.91	1.55	1.96	1.99	2.08	
acetone	CH_3	S	2.17	2.09	2.09	1.55	2.08	2.15	2.22	
acetonitrile	CH_3	S	2.10	2.05	2.07	1.55	1.96	2.03	2.06	
benzene	CH	S	7.36	7.36	7.37	7.15	7.37	7.33		
<i>tert</i> -butyl alcohol	CH ₃	S	1.28	1.18	1.11	1.05	1.16	1.40	1.24	
	OH ^c	S			4.19	1.55	2.18		1.04	
<i>tert</i> -butyl methyl ether	CCH ₃	S	1.19	1.13	1.11	1.07	1.14	1.15	1.21	
DUT	OCH ₃	S	3.22	3.13	3.08	3.04	3.13	3.20	3.22	
BHT ^b	ArH OH ^c	S	6.98 5.01	6.96	6.87	7.05 4.79	6.97 5.20	6.92		
	ArCH ₃	S	5.01 2.27	2.22	6.65 2.18	4.79 2.24	5.20 2.22	2.21		
	ArCH ₃ ArC(CH ₃) ₃	S S	1.43	1.41	1.36	1.38	1.39	1.40		
chloroform	CH	s s	7.26	8.02	8.32	6.15	7.58	7.90		
cyclohexane	CH_2	S	1.43	1.43	1.40	1.40	1.44	1.45		
1,2-dichloroethane	CH ₂	s	3.73	3.87	3.90	2.90	3.81	3.78		
dichloromethane	CH_2	s	5.30	5.63	5.76	4.27	5.44	5.49		
diethyl ether	CH_2 CH_3	t, 7	1.21	1.11	1.09	1.11	1.12	1.18	1.17	
diedily'i ether	CH_2	q, 7	3.48	3.41	3.38	3.26	3.42	3.49	3.56	
diglyme	CH ₂	m	3.65	3.56	3.51	3.46	3.53	3.61	3.67	
85	CH_2	m	3.57	3.47	3.38	3.34	3.45	3.58	3.61	
	OCH_3	s	3.39	3.28	3.24	3.11	3.29	3.35	3.37	
1,2-dimethoxyethane	CH ₃	s	3.40	3.28	3.24	3.12	3.28	3.35	3.37	
Ũ	CH_2	s	3.55	3.46	3.43	3.33	3.45	3.52	3.60	
dimethylacetamide	CH ₃ CO	S	2.09	1.97	1.96	1.60	1.97	2.07	2.08	
	NCH ₃	s	3.02	3.00	2.94	2.57	2.96	3.31	3.06	
	NCH_3	S	2.94	2.83	2.78	2.05	2.83	2.92	2.90	
dimethylformamide	СН	S	8.02	7.96	7.95	7.63	7.92	7.97	7.92	
	CH_3	S	2.96	2.94	2.89	2.36	2.89	2.99	3.01	
	CH_3	S	2.88	2.78	2.73	1.86	2.77	2.86	2.85	
dimethyl sulfoxide	CH ₃	S	2.62	2.52	2.54	1.68	2.50	2.65	2.71	
dioxane	CH_2	s	3.71	3.59	3.57	3.35	3.60	3.66	3.75	
ethanol	CH_3	t, 7	1.25	1.12	1.06	0.96	1.12	1.19	1.17	
	CH ₂	q , 7 ^d	3.72	3.57	3.44	3.34	3.54	3.60	3.65	
	OH	$\mathbf{s}^{c,d}$	1.32	3.39	4.63	1.05	2.47	0.01	0.07	
ethyl acetate	CH ₃ CO	s	2.05 4.12	1.97 4.05	1.99	1.65 3.89	1.97	2.01 4.09	2.07 4.14	
	CH_2CH_3	q, 7 t, 7	4.12	4.05	4.03 1.17	3.89 0.92	4.06 1.20	4.09	4.14	
ethyl methyl ketone	CH ₂ C <i>H</i> ₃ CH ₃ CO		2.14	2.07	2.07	1.58	2.06	2.12	2.19	
ethyl methyl ketone	CH_3CO CH_2CH_3	s q, 7	2.14	2.45	2.43	1.38	2.00	2.12	3.18	
	CH_2CH_3 CH_2CH_3	ų, 7 t, 7	1.06	0.96	0.91	0.85	0.96	1.01	1.26	
ethylene glycol	CH CH	s ^e	3.76	3.28	3.34	3.41	3.51	3.59	3.65	
"grease" ^f	CH_3	m	0.86	0.87	0.01	0.92	0.86	0.88	0.00	
Broube	CH ₂	br s	1.26	1.29		1.36	1.27	1.29		
<i>n</i> -hexane	CH ₃	t	0.88	0.88	0.86	0.89	0.89	0.90		
	CH_2	m	1.26	1.28	1.25	1.24	1.28	1.29		
HMPA ^g	$\tilde{CH_{3}}$	d, 9.5	2.65	2.59	2.53	2.40	2.57	2.64	2.61	
methanol	CH ₃	s ^h	3.49	3.31	3.16	3.07	3.28	3.34	3.34	
	OH	$\mathbf{s}^{c,h}$	1.09	3.12	4.01		2.16			
nitromethane	CH_3	s	4.33	4.43	4.42	2.94	4.31	4.34	4.40	
<i>n</i> -pentane	CH_3	t, 7	0.88	0.88	0.86	0.87	0.89	0.90		
	CH_2	m	1.27	1.27	1.27	1.23	1.29	1.29		
2-propanol	CH_3	d, 6	1.22	1.10	1.04	0.95	1.09	1.50	1.17	
	СН	sep, 6	4.04	3.90	3.78	3.67	3.87	3.92	4.02	
pyridine	CH(2)	m	8.62	8.58	8.58	8.53	8.57	8.53	8.52	
	CH(3)	m	7.29	7.35	7.39	6.66	7.33	7.44	7.45	
	CH(4)	m	7.68	7.76	7.79	6.98	7.73	7.85	7.87	
silicone grease ⁱ	CH ₃	S	0.07	0.13		0.29	0.08	0.10		
tetrahydrofuran	CH_2	m	1.85	1.79	1.76	1.40	1.80	1.87	1.88	
	CH ₂ O	m	3.76	3.63	3.60	3.57	3.64	3.71	3.74	
toluene	CH ₃	S	2.36	2.32	2.30	2.11	2.33	2.32		
	CH(o/p)	m	7.17	7.1-7.2	7.18	7.02	7.1-7.3	7.16		
4	CH(m)	m	7.25	7.1-7.2	7.25	7.13	7.1-7.3	7.16	0.00	
triethylamine	CH ₃	t,7	1.03	0.96	0.93	0.96	0.96	1.05	0.99	
	CH_2	q, 7	2.53	2.45	2.43	2.40	2.45	2.58	2.57	

^{*a*} In these solvents the intermolecular rate of exchange is slow enough that a peak due to HDO is usually also observed; it appears at 2.81 and 3.30 ppm in acetone and DMSO, respectively. In the former solvent, it is often seen as a 1:1:1 triplet, with ${}^{2}J_{H,D} = 1$ Hz. ^{*b*} 2,6-Dimethyl-4-*tert*-butylphenol. ^{*c*} The signals from exchangeable protons were not always identified. ^{*d*} In some cases (see note *a*), the coupling interaction between the CH₂ and the OH protons may be observed (J = 5 Hz). ^{*e*} In CD₃CN, the OH proton was seen as a multiplet at δ 2.69, and extra coupling was also apparent on the methylene peak. ^{*i*} Long-chain, linear aliphatic hydrocarbons. Their solubility in DMSO was too low to give visible peaks. ^{*g*} Hexamethylphosphoramide. ^{*h*} In some cases (see notes *a*, *d*), the coupling interaction between the CH₃ and the OH protons may be observed (J = 5.5 Hz). ^{*i*} Poly(dimethylsiloxane). Its solubility in DMSO was too low to give visible peaks.

show their degree of variability. Occasionally, in order to distinguish between peaks whose assignment was ambiguous, a further $1-2 \mu L$ of a specific substrate were added and the spectra run again.

solvent signals acetic acid acetone acetonitrile benzene <i>tert</i> -butyl alcohol	CO CH ₃ CO CH ₃ CN CH ₃ CH CH C	$\frac{\text{CDCl}_3}{77.16\pm0.06}$ $\frac{175.99}{20.81}$ $\frac{207.07}{30.92}$ 116.43	$\begin{array}{c} (CD_3)_2CO\\ 29.84\pm 0.01\\ 206.26\pm 0.13\\ 172.31\\ 20.51\\ 205.87 \end{array}$	$(CD_3)_2SO$ 39.52 ± 0.06 171.93	$\frac{C_6 D_6}{128.06 \pm 0.02}$ 175.82	$\begin{array}{c} \text{CD}_3\text{CN} \\ 1.32 \pm 0.02 \\ 118.26 \pm 0.02 \\ 173.21 \end{array}$	CD ₃ OD 49.00±0.01	D ₂ O
acetic acid acetone acetonitrile benzene	CH ₃ CO CH ₃ CN CH ₃ CH	175.99 20.81 207.07 30.92 116.43	$\begin{array}{c} 206.26 \pm 0.13 \\ 172.31 \\ 20.51 \end{array}$	171.93		118.26 ± 0.02		
acetone acetonitrile benzene	CH ₃ CO CH ₃ CN CH ₃ CH	20.81 207.07 30.92 116.43	172.31 20.51		175 82			
acetone acetonitrile benzene	CH ₃ CO CH ₃ CN CH ₃ CH	20.81 207.07 30.92 116.43	20.51				175 11	177.21
acetonitrile benzene	$\begin{array}{c} CO\\ CH_3\\ CN\\ CH_3\\ CH_3\\ CH \end{array}$	207.07 30.92 116.43		20.95	20.37	20.73	175.11 20.56	21.03
acetonitrile benzene	CN CH ₃ CH	116.43		206.31	204.43	207.43	209.67	215.94
benzene	$_{ m CH_3}$ CH		30.60	30.56	30.14	30.91	30.67	30.89
	CH		117.60	117.91	116.02	118.26	118.06	119.68
		1.89 128.37	1.12 129.15	1.03 128.30	0.20 128.62	1.79 129.32	0.85 129.34	1.47
tert butyr arounor		69.15	68.13	66.88	68.19	68.74	69.40	70.36
	CH ₃	31.25	30.72	30.38	30.47	30.68	30.91	30.29
tert-butyl methyl ether	OCH_3	49.45	49.35	48.70	49.19	49.52	49.66	49.37
	C	72.87	72.81	72.04	72.40	73.17	74.32	75.62
BHT	C <i>C</i> H ₃ C(1)	26.99 151.55	27.24 152.51	26.79 151.47	27.09 152.05	27.28 152.42	27.22 152.85	26.60
DIII	C(1) C(2)	135.87	138.19	139.12	136.08	138.13	139.09	
	CH(3)	125.55	129.05	127.97	128.52	129.61	129.49	
	C(4)	128.27	126.03	124.85	125.83	126.38	126.11	
	CH ₃ Ar	21.20	21.31	20.97	21.40	21.23	21.38	
	CH₃C C	30.33 34.25	31.61 35.00	31.25 34.33	31.34 34.35	31.50 35.05	31.15 35.36	
chloroform	СН	77.36	79.19	79.16	77.79	79.17	33.30 79.44	
cyclohexane	CH ₂	26.94	27.51	26.33	27.23	27.63	27.96	
1,2-dichloroethane	CH_2	43.50	45.25	45.02	43.59	45.54	45.11	
dichloromethane	CH_2	53.52	54.95	54.84	53.46	55.32	54.78	
diethyl ether	CH_3	15.20	15.78	15.12	15.46	15.63	15.46	14.77
diglyme	$CH_2 \\ CH_3$	65.91 59.01	66.12 58.77	62.05 57.98	65.94 58.66	66.32 58.90	66.88 59.06	66.42 58.67
ulgiyine	CH ₂	70.51	71.03	69.54	70.87	70.99	71.33	70.05
	CH_2	71.90	72.63	71.25	72.35	72.63	72.92	71.63
1,2-dimethoxyethane	CH_3	59.08	58.45	58.01	58.68	58.89	59.06	58.67
J	CH_2	71.84	72.47	17.07	72.21	72.47	72.72	71.49
dimethylacetamide	CH_3 CO	21.53 171.07	21.51 170.61	21.29 169.54	21.16 169.95	21.76 171.31	21.32 173.32	21.09 174.57
	NCH ₃	35.28	34.89	37.38	34.67	35.17	35.50	35.03
	NCH ₃	38.13	37.92	34.42	37.03	38.26	38.43	38.76
dimethylformamide	CH	162.62	162.79	162.29	162.13	163.31	164.73	165.53
	CH_3	36.50	36.15	35.73	35.25	36.57	36.89	37.54
dimethyl sulfoxide	CH_3 CH_3	31.45 40.76	31.03 41.23	30.73 40.45	30.72 40.03	31.32 41.31	31.61 40.45	32.03 39.39
dioxane	CH ₂	67.14	67.60	66.36	67.16	67.72	68.11	67.19
ethanol	CH ₃	18.41	18.89	18.51	18.72	18.80	18.40	17.47
	CH ₂	58.28	57.72	56.07	57.86	57.96	58.26	58.05
ethyl acetate	CH ₃ CO	21.04	20.83	20.68	20.56	21.16	20.88	21.15
	$CO \\ CH_2$	171.36 60.49	170.96 60.56	170.31 59.74	170.44 60.21	171.68 60.98	172.89 61.50	175.26 62.32
	CH_2 CH_3	14.19	14.50	14.40	14.19	14.54	14.49	13.92
ethyl methyl ketone	CH ₃ CO	29.49	29.30	29.26	28.56	29.60	29.39	29.49
5 5	CO	209.56	208.30	208.72	206.55	209.88	212.16	218.43
	CH_2CH_3	36.89	36.75	35.83	36.36	37.09	37.34	37.27
athulana aluaal	CH_2CH_3	7.86 63.79	8.03	7.61 62.76	7.91 64.34	8.14 64.22	8.09	7.87 63.17
ethylene glycol "grease"	${ m CH_2} { m CH_2}$	29.76	64.26 30.73	29.20	30.21	30.86	64.30 31.29	03.17
<i>n</i> -hexane	CH ₂ CH ₃	14.14	14.34	13.88	14.32	14.43	14.45	
	$CH_2(2)$	22.70	23.28	22.05	23.04	23.40	23.68	
	CH ₂ (3)	31.64	32.30	30.95	31.96	32.36	32.73	
HMPA ^b	CH ₃	36.87	37.04	36.42	36.88	37.10	37.00	36.46
methanol nitromethane	${ m CH_3} { m CH_3}$	50.41 62.50	49.77 63.21	48.59 63.28	49.97 61.16	49.90 63.66	49.86 63.08	49.50 ^a 63.22
<i>n</i> -pentane	CH ₃	14.08	14.29	13.28	14.25	14.37	14.39	00.22
P	$CH_2(2)$	22.38	22.98	21.70	22.72	23.08	23.38	
	CH ₂ (3)	34.16	34.83	33.48	34.45	34.89	35.30	
2-propanol	CH_3	25.14	25.67	25.43	25.18	25.55	25.27	24.38
numidino	CH CH(2)	64.50 149.90	63.85	64.92 149.58	64.23 150.27	64.30 150.76	64.71 150.07	64.88 149.18
pyridine	CH(2) CH(3)	123.75	150.67 124.57	123.84	123.58	127.76	125.53	125.12
	CH(4)	135.96	136.56	136.05	135.28	136.89	138.35	138.27
silicone grease	CH_3	1.04	1.40		1.38		2.10	
tetrahydrofuran	CH_2	25.62	26.15	25.14	25.72	26.27	26.48	25.67
4 . l	CH ₂ O	67.97	68.07	67.03	67.80	68.33	68.83	68.68
toluene	CH_3	21.46 137.89	21.46 138.48	20.99 137.35	21.10 137.91	21.50 138.90	21.50 138.85	
	C(<i>i</i>) CH(<i>o</i>)	137.89 129.07	138.48 129.76	137.35 128.88	137.91 129.33	138.90	138.85 129.91	
	CH(b) CH(m)	128.26	129.03	128.18	128.56	129.23	129.20	
	CH(p)	125.33	126.12	125.29	125.68	126.28	126.29	
triethylamine	CH_3	11.61	12.49	11.74	12.35	12.38	11.09	9.07
	CH_2	46.25	47.07	45.74	46.77	47.10	46.96	47.19

 a See footnotes for Table 1. $^{b\ 2}J_{\rm PC}$ = 3 Hz. c Reference material; see text.

Notes

For D_2O solutions there is no accepted reference for carbon chemical shifts. We suggest the addition of a drop of methanol, and the position of its signal to be defined as 49.50 ppm; on this basis, the entries in Table 2 were recorded. The chemical shifts thus obtained are, on the whole, very similar to those for the other solvents. Alternatively, we suggest the use of dioxane when the methanol peak is expected to fall in a crowded area of the spectrum. We also report the chemical shifts of sodium formate (171.67 ppm), sodium acetate (182.02 and 23.97 ppm), sodium carbonate (168.88 ppm), sodium bicarbonate (161.08 ppm), and sodium 3-(trimethylsilyl)-propanesulfonate [54.90, 19.66, 15.56 (methylenes 1, 2, and 3, respectively), and -2.04 ppm (methyls)], in D_2O .

Temperature Dependence of HDO Chemical Shifts. We recorded the ¹H spectrum of a sample of D_2O , containing a crystal of sodium 3-(trimethylsilyl)propanesulfonate as reference, as a function of temperature. The data are shown in Figure 1. The solid line connecting the experimental points corresponds to the equation

$$\delta = 5.060 - 0.0122 T + (2.11 \times 10^{-5}) T^2 \qquad (1)$$

which reproduces the measured values to better than 1 ppb. For the 0 - 50°C range, the simpler

$$\delta = 5.051 - 0.0111T \tag{2}$$

gives values correct to 10 ppb. For both equations, T is the temperature in °C.

Acknowledgment. Generous support for this work by the Minerva Foundation and the Otto Mayerhoff Center for the Study of Drug–Receptor Interactions at Bar-Ilan University is gratefully acknowledged.

JO971176V