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ABSTRACT: Redox diversity is a common and important feature
of nature. Herein, a Pd-catalyzed redox divergent coupling of
ketones with terpenols has been developed to access α-substituted
ketones with varying degrees of unsaturation. The control of
oxidation states of the product is facilitated by employing different
additives. With the aid of BnOH as an external hydrogen source, a
reductive coupling pathway is thermodynamically favored. The use
of LiBr as the additive will reduce the reactivity of Pd−H to divert
the selectivity toward α,β-unsatuated ketones. By switching the
solvent from toluene to chlorobenzene, the active species Pd−H
will be fully quenched to enable oxidative coupling. Gram-scale
reaction with lower catalyst loading (0.5 mol %) was also
accomplished to highlight the practicability of this protocol.
Furthermore, detailed experimental studies were carried out to elucidate the reaction mechanism and the factors enabling
manipulation of the redox selectivity. This redox divergent coupling protocol provides an important complement for known
precedents on Tsuji−Trost allylation of ketones.

KEYWORDS: redox diversity, ketones, terpenols, reductive coupling, oxidative coupling

Redox metabolism has been recognized as one of the most
important metabolic pathways in organisms.1 With the

aid of various redox enzymes, this metabolite will create
important bioactive metabolites with different redox states.2

For example, as the primary photoreceptor molecule of vision,
rhodopsin (also known as visual purple) consists of the protein
opsin linked to 11-cis-retinal. A light absorption leads to the
isomerization of the 11-cis-retinal group of rhodopsin to its all-
trans form and the generation of a nerve impulse.3 Retinal and
retinol (vitamin A) can undergo mutual conversion catalyzed
by oxidoreductase.4 In addition, retinal can be further oxidized
to retinoic acid in the presence of ALDH (aldehyde
dehydrogenase, Scheme 1a).5 With respect to artificial
processes, hydrogenation and dehydrogenation are two
important methods to change the redox state of compounds.6

The transition-metal-catalyzed dehydrogenation has achieved
rapid development in recent years.7 However, most of the
current research focuses on monoredox transformation.
Therefore, it is of great significance to realize the
corresponding regulation of redox divergent couplings with
artificial catalysts.
α-Substituted carbonyl compounds are common motifs8 in

natural products9 and can be widely found in most of the top
200 prescription drugs.10 In the past few decades, many elegant
Pd-catalyzed Tsuji−Trost allylation reactions have been
demonstrated to produce α-allyl ketones (Scheme 1b).11

One of the general features of this transformation is the

formation of π-allyl palladium intermediates from substrates
with leaving groups (X,12 NR2,

13 OCO2R,
14 CO2R,

15 OR,16

OH,17 etc.). On the other hand, stereo-, regio-, and
chemodivergent strategies are the state-of-the-art in the
generation of molecular diversity.18 Since redox diversity is
ubiquitous in nature, we envisioned that the redox strategy
might be also employed to expand the diversity of chemical
catalytic allylation reactions. As a naturally and industrially
abundant feedstock, prenol is a green precursor of terpenoids
and their derivatives.19 Following our long-standing interest in
pursuing divergent selective transformations of terpenes,20 we
sought to develop a Pd-catalyzed redox divergent coupling of
ketones with terpenols (Scheme 1c). The major challenge of
this proposal is the construction of C−C bond with varying
degrees of unsaturation. It provides an important complement
for known precedents on Tsuji−Trost allylation of ketones.
Initially, we chose 1-tetralone (1a) and prenol (2a) as the

model substrates to attempt Pd-catalyzed redox divergent
coupling. In the presence of [η3-allylPdCl]2, N-heterocyclic
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carbene ligand (SIPr·HCl), and aniline, three products
including reductive alkylated ketone 3a, α,β-unsaturated
ketone 4a, and normal allylated ketone 6a were obtained in
low selectivities. Of note is that aniline could be almost
completely recovered, thus suggesting aniline serves as a
cocatalyst (Table 1, entry 1). The yield and selectivity
decreased dramatically when the reaction was performed
under air atmosphere (entry 2). The use of BINAP as ligand
gave low conversion of 1a (entry 3). With a view to obtain the
reductive coupling product 3a, an external hydrogen source
would be required. Therefore, different alcohols including
MeOH, tBuOH, and BnOH were further examined (entries 4−
6). Delightedly, when BnOH was engaged in the reaction, the
yield of 3a was significantly increased to 92%, and no other
products were detected (entry 6). In contrast, by varying the
additives to bromide salts such as KBr, NaBr, and LiBr, 4a
turned out to be predominant (entries 7−9). It may be
because LiBr could decrease the hydrogenation ability of Pd−
H, thereby preventing further hydrogenation of 4a. The
employment of 4-aminopyridine as cocatalyst provided a better
result (entry 10). The yield of 4a could be improved to 72% at
an elevated temperature in the presence of precatalyst [η3-
cinPdCl]2 (entry 11). Surprisingly, when PhCl was used as
solvent, oxidative coupling product 5a was exclusively obtained
(entry 12). The secondary amine piperidine was found to be a
better cocatalyst (entry 13). Increasing the amount of MeONa
led to a further improvement of the yield of 5a (entry 14).21

With the optimized conditions in hand, we subsequently
explored the substrate scope of this redox divergent protocol.
As demonstrated in Table 2, for reductive couplings, subjecting
unsubstituted 1-tetralone 1a to the standard conditions

Scheme 1. Redox Diversity-Oriented Synthesis

Table 1. Optimization for Pd-Catalyzed Redox Divergent Couplinga

yieldb (%)

entry amine additive sol 3a 4a 5a 6a

1 PhNH2 Tol 51 5 4
2c PhNH2 Tol 8 5
3d PhNH2 Tol 5 15
4 PhNH2 MeOH Tol 78 6
5 PhNH2

tBuOH Tol 62 4 1

6 PhNH2 BnOH Tol 92h

7e PhNH2 KBr Tol 48 30
8e PhNH2 NaBr Tol 53 46
9e PhNH2 LiBr Tol 7 36
10e 4-aminopyridine LiBr Tol 5 56
11f,g 4-aminopyridine LiBr Tol 4 72h

12 PhNH2 PhCl 52
13 piperidine PhCl 68
14g piperidine PhCl 93h

aConditions: 1a (0.20 mmol), 2a (0.30 mmol), [η3-allylPdCl]2 (2.5 mol %), SIPr•HCl (5 mol %), MeONa (1.5 equiv), additive (1.5 equiv),
solvent (0.6 mL), 70 °C. bDetermined by GC-FID analysis of the crude product mixture using mesitylene as internal standard. cUnder air
atmosphere. dBINAP instead of SIPr·HCl. eMeONa (1.0 equiv). f[η3-cinPdCl]2 instead of [η3-allylPdCl]2, 80 °C. gMeONa (3.0 equiv); hIsolated
yield. Tol = Toluene; PhCl = Chlorobenzene.
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furnished 3a in 92% yield. 4-Me-1-tetralone 1b underwent this
alkylation smoothly at 70 °C to provide 3b in 85% yield.
Substrates bearing a methoxyl group on the phenyl ring,
regardless of its positions, were all well tolerated (3c−e),
providing the corresponding ketones in good yields. 7-Me and
7-F on the phenyl ring were also compatible with this process
and gave the products (3f−g) in satisfactory yields. However,
in the cases of 7-Cl- and 7-Br-derived substrates, dehalo-
genated products were obtained (see Scheme S1). Further-
more, this transformation could be extended to 1-indanone
(1h, five-membered ring) and 1-benzosuberone (1i, seven-
membered ring). Notably, noncyclic ketones were also
applicable to the current protocol, and the α-alkylated ketones
could be successfully produced in 46%−93% yields (3j−l).
Unfortunately, aryl ketones with ester and nitro substituents
and pyridine-fused cyclohexanone were not tolerated (see
Scheme S1). Additionally, the attempts to induce the
enantioselectivity with chiral amine catalysts all failed (see
Scheme S2).
The ketone scope for the Pd-catalyzed migratory coupling

was further surveyed (Table 3). By adding LiBr, simple ketone
1a could be transformed into the α,β-unsatuated ketone 4a in
72% yield through hydrogen migration. The E-configuration of
4a was determined via two-dimensional nuclear magnetic
resonance spectroscopy (NOESY). Substrates possessing
electron-donating groups, such as −OMe and −Me, all reacted
smoothly to produce the corresponding products in good
yields (76−87%) and good selectivities (4b−4f). The fluoro
group on the phenyl ring was also well tolerated and gave the
ketone 4g in 74% yield with 14:1 E/Z. Moreover, the ketone
bearing a 5-membered ring was applicable to the coupling as
well albeit with a slightly decreased yield (4h). Notably, the 7-
membered ring derived ketone was efficiently converted to the
corresponding product 4i in 84% yield with excellent
selectivity.

We next set about to assess the scope with respect to the
oxidative coupling conditions (Table 4). The model substrate

1a was converted into the desired product 5a in 93% yield. It is
worth noting that the process could still proceed with high
efficiency (90% yield) with the catalyst loading being reduced
to 0.5 mol %. Moreover, a range of 1-tetralones with
substituents at the 4-, 6-, or 7-positions all worked well in
this protocol to give products 5b−5f in 78−94% yields.
Remarkably, substrates with either a 5-membered ring or 7-
membered ring were all compatible with the current conditions
and produced the highly unsaturated ketones (5g−i) in good
to excellent yields. In all cases, the products were obtained with
exclusive E-stereoselectivity, and the configuration was further

Table 2. Ketone Scope for Pd-Catalyzed Reductive
Coupling

aUsing (SIPr)Pd(allyl)Cl (2.5 mol%) directly. bBnOH (0.25 eq.). c2a
(1.0 eq.). dWithout BnOH. eMeOH was used as the solvent.

Table 3. Ketone Scope for Pd-Catalyzed Migratory
Coupling

aUsing (SIPr)Pd(cin)Cl (2.5 mol%) directly.

Table 4. Ketone Scope for Pd-Catalyzed Oxidative Coupling

a(SIPr)Pd(allyl)Cl (0.5 mol%), MeONa (2.0 eq.). bMeONa (1.5
eq.).
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confirmed by two-dimensional nuclear magnetic resonance
spectroscopy (NOESY) of product 5a.
Subsequently, we turned our attention toward the scope of

various terpenols using the current redox divergent coupling
strategy (Table 5). Terpenols bearing two or more isoprene
units, such as geraniol (2b), farnesol (2c), and phytol (2d), all
proceeded smoothly to deliver the reductive coupling products
(3ab−ad) in good yields (78−87%, condition A). Under the
conditions B, these substrates were also tolerated, giving the
expected products (4ab−ad) in good stereoselectivity but with
moderate yields, mainly because 1-tetralone 1a could not be
totally consumed. For the oxidative coupling reactions, the
number of isoprene units in the terpenol substrates also
exhibited no significant influence on the reactive efficiency, and

all of the products (5ab−ad) were produced in good yields
(83−91%).
Additional control experiments were further conducted to

elucidate the mechanism of this redox divergent coupling
protocol. First, the kinetic studies for the couplings under
conditions A and B were carried out, and the results are shown
in Scheme 2. For reductive coupling, a volcano-shaped
correlation was observed between the yield of 5a and the
reaction time (Scheme 2a). In addition, the yield of α,β-
unsatuated ketone 4a displayed a moderate positive correlation
with the yield of 5a. A sigmoidal kinetic curve was observed for
the desired product 3a (Scheme 2a). These results suggest that
unsaturated ketones 4a and 5a are probably the intermediates
of the reaction and can be transformed into saturated ketone
3a through further reduction. For the coupling under

Table 5. Terpenol Scope for Pd-Catalyzed Redox Divergent Couplinga

aCondition A: [η3-allylPdCl]2 (2.5 mol %), SIPr·HCl (5 mol %), PhNH2 (50 mol %), PhCH2OH (25 mol %), MeONa (1.5 eq.), Tol, 70 °C.
Condition B: [η3-cinPdCl]2 (2.5 mol%), SIPr·HCl (5 mol %), 4-Aminopyridine (50 mol %), LiBr (1.5 eq.), MeONa (1.0 eq.), Tol, 80 °C.
Condition C: [η3-allylPdCl]2 (2.5 mol %), SIPr·HCl (5 mol %), Piperidine (50 mol %), MeONa (1.5 eq.), PhCl, 70 °C.

Scheme 2. Kinetic Studiesa

aDetermined by GC-FID analysis of the crude product mixture using mesitylene as internal standard.
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conditions B (Scheme 2b), the nearly flat yield curve of 5a
indicates that its formation rate is close to its consumption rate
(2−13 h). The yield of α,β-unsatuated ketone 4a increased
with the reaction time under conditions B. The comparison of
the reaction rate under conditions A and B reveals that the
addition of LiBr greatly reduced the catalyst’s turnover
frequency [kavg (3a vs 4a) = 0.14 vs 0.02 mmol/h]. It is
noteworthy that allylated product 6a was not detected at all
under conditions B.
The interconversions of these three redox divergent

products were subsequently performed (Scheme 3a). The

oxidative product 5a could be readily transformed into
saturated ketone 3a and α,β-unsaturated ketone 4a under
conditions D and E, respectively. In addition, 3a could also be
easily obtained in 90% yield from 4a under condition E
(Scheme 3a). Additionally, BnOH has no obvious effect on the
interchange conversions. Remarkably, the reductive coupling
still took place smoothly to furnish 3a in gram scale (1.314 g)
with 76% yield at very low catalyst loading (0.5 mol %, Scheme
3b).
The amount of MeONa had a significant effect on the

selectivity of this redox divergent coupling reaction (Table 6).
When the amount of MeONa was increased, the ratio of 3a/4a
increased significantly. This phenomenon indicates that in
addition to a base, MeONa likely also serves as a hydrogen
source in the process. This speculation was further supported
by the isotopic labeling studies (Scheme 4). In the presence of
CD3ONa (2.0 equiv), the reductive coupling of prenol 2a with
1-tetralone 1a delivered deuterio-3a-d in 69% yield with
deuterium being scrambled into all branched alkyl carbons
(Scheme 4a, top). Under migratory coupling condition B, a
similar deuterium scrambling result was observed on deuterio-
4a-d (Scheme 4a, middle). The oxidative coupling product 5a-
d was obtained in 92% yield with 4% deuterium being
incorporated at terminal methyl groups (Scheme 4a, bottom).
The deuterium incorporation at terminal methyl groups of 3a-
d, 4a-d, and 5a-d illustrates that enol isomerization of 5a is
involved during the reaction (Scheme 4b).

For the oxidative coupling, an expected prenal 7a and an
unexpected aldehyde 7b were simultaneously observed in the
absence of 1-tetralone 1a (Scheme 5a). Highly unsaturated
aldehyde 7b originates from the self-condensation of prenal
7a.22 This result demonstrates that prenal 7a, formed by β-H
elimination, is likely the precursor of 5a, and the resulting Pd−
H can be quenched by PhCl to furnish PhH. To further probe
the reaction mechanism, a kinetic experiment for the oxidative
coupling of 1-tetralone 1a and prenol 2a was carried out.
Surprisingly, this coupling proceeded very fast and accom-
plished within 60 min. Meanwhile, a large amount of benzene
was formed, suggesting that PhCl could quench the reductive
Pd−H species to prevent further reduction of 5a (Scheme 5b).
A small amount of benzene was also detected when NHC-Pd
was prepared in situ with MeONa in PhCl (Scheme 5c). It
indicates that benzene is partially produced from the reaction
of PhCl with MeONa in the presence of palladium.
Several control experiments have been designed to interpret

the role of amine during this redox-divergent coupling
(Scheme 6). For the formation of ketone 5a, external amine
could increase the condensation reactivity in the presence of
MeONa (Scheme 6a). Compound 5a cannot be obtained
when aniline was solely introduced because the strong base

Scheme 3. Interchange Conversions and Gram-Scale
Reaction

aDetermined by GC-FID analysis of the crude product mixture using
mesitylene as internal standard.

Table 6. Effect of MeONa on the Redox Statea

entry MeONa (eq ) 3a (%) 4a (%) 5a (%) 6a (%)

1 0.02 7
2 0.50 18 22 3
3 1.00 32 23 2
4 1.50 51 5 4

aDetermined by GC-FID analysis of the crude product mixture using
mesitylene as internal standard.

Scheme 4. Isotopic Labeling Studies
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(MeONa) is crucial for the process. The first transfer
hydrogenation of 5a to α,β-unsatuated ketone 4a was partially
suppressed by the addition of amine (Scheme 6b). However,
no negative effect of amine was observed in the second transfer
hydrogenation of 4a to saturated ketone 3a.

In order to better clarify the role of chlorobenzene in the
oxidative coupling of 1-tetralone 1a and prenol 2a, a set of aryl
halides including para-substituted chlorobenzenes with differ-
ent electronic properties, bromo- and iodobenzene were
selected as the solvents (Scheme 7). All of the reactions led

to the formation of a large amount of dehalogenated arenes.
The solvents exerted a significant influence on the outcome,
and PhCl offered the best result.
On the basis of the above observations and previous work, a

plausible mechanism for the redox divergent coupling was
proposed (Scheme 8). Under the condition C for the oxidative
coupling, the catalyst precursor undergoes reductive elimi-
nation to generate Pd(0) species B. A subsequent oxidative
addition of chlorobenzene with B yields phenyl-Pd(II)
complex C. The direct ligand exchange of Pd(II) complex C
with MeONa forms a MeO-Pd-Ph species which undergoes β-
H elimination and reductive elimination successively to form
benzene as side product and rebound to Pd(0) species B. An
alternative deprotonation of prenol 2a with C forms benzene
as a byproduct. Meanwhile, it also generates alkoxide-Pd(II)
intermediate D which undergoes β-H elimination to generate
prenal 7a and Pd(II)-hydride E. Pd(0) species B is regenerated
from a reductive elimination of E. Highly unsaturated ketone
5a could be produced from the coupling of 1-tetralone 1a with
prenal 7a promoted by external amine.
Under the condition B for the migratory coupling, the

alkoxide-Pd(II) intermediate D is generated from the
deprotonation of prenol 2a with catalyst precursor A (Scheme
8). Then ketone 5a could be obtained via same pathway
aforementioned. In the absence of chlorobenzene, Pd(II)-
hydride F could be formed reversibly from the oxidation of
Pd(0) species B with alcohol (prenol 2a, MeOH, or BnOH).
The coordination of Pd(II)-hydride F with ketone 5a gives
complex G. A subsequent hydride transfer delivers vinylogous

Scheme 5. Mechanistic Studies for Oxidative Coupling of 1a
and 2a

aDetermined by GC-FID analysis of the crude product mixture using
mesitylene as internal standard.

Scheme 6. Control Studies on the Role of External Amine

aDetermined by GC-FID analysis of the crude product mixture using
mesitylene as internal standard.

Scheme 7. Solvent Effect on the Formation of 5aa

aDetermined by GC-FID analysis of the crude product mixture using
mesitylene as internal standard.
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enolate H. The final protonolysis of H with prenol 2a yields
the migratory coupling products 4a and regenerates alkoxide-
Pd(II) intermediate D. Further reduction of α,β-unsaturated
ketone 4a will furnish saturated ketone 3a. The addition of
LiBr can prevent further transfer hydrogenation of 4a, likely
because LiBr can change the environment around the Pd
center, which may have an effect on the activity of the Pd−H
species.
In conclusion, a practical strategy for the redox divergent

coupling of ketones with terpenols has been developed under
palladium catalysis. Manipulation of the selectivity was
governed by the choice of different additives. Utilization of
BnOH as an additive afforded reductive coupling products
with high selectivity, while LiBr additive enabled selective
synthesis of migration coupling product. Moreover, using PhCl
as solvent, oxidative coupling products can be obtained with
high selectivity. A gram-scale reaction has also been
demonstrated with lower catalyst loading (0.5 mol %) to
highlight the practicality of this protocol. Furthermore, detailed
experimental investigations were conducted to interpret the
reaction mechanism and the factors enabling manipulation of
the redox selectivity. This redox divergent coupling protocol
complements traditional precedents of Tsuji−Trost allylation
of ketones. Further studies on exploitation of new redox
divergent couplings of terpenols are underway in our
laboratory.
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