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ABSTRACT: The recent surge in the applications of deuterated drug candidates has rendered an urgent need for diverse deuterium
labeling techniques. Herein, an efficient Rh-catalyzed deuterated Tsuji−Wilkinson decarbonylation of naturally available aldehydes
with D2O is developed. In this reaction, D2O not only acts as a deuterated reagent and solvent but also promotes Rh-catalyzed
decarbonylation. In addition, decarbonylative strategies for the synthesis of terminal monodeuterated alkenes from α,β-unsaturated
aldehydes are within reach.

Since Austedo received FDA approval,1 there are many
other deuterated drug candidates under clinical testing,

such as d1-JNJ38877605,
2 d3-enzalutamide (Scheme 1a).3

Deuterium-labeled molecules are expected to prolong the
half-life of metabolism, enhance the efficacy, and decrease side
effects owing to the better stability of C−D bonds compared to
that of C−H bonds.4 In particular, deuterium-containing

molecules have been widely used in mechanistic studies5 and
NMR analyses.6 Therefore, it is of great interest to develop
efficient deuterated methods.7−9

Given the tremendous availability of aldehydes, the develop-
ment of an efficient deuterated protocol for editing aldehydes
can be expected to increase the accessibility and chemical
space of deuterated compounds.10 Currently, several methods
for the formyl-selective deuteration of aldehydes have been
developed under transition metal catalysis,11 NHC catalysis,12

enzymes catalysis,13 or photoredox catalysis.14 In terms of C−
H/C−C bond dissociation energy (BDE),15 the decarbon-
ylative deuteration of aldehydes will be more challenging and
remains unknown (Scheme 1b). Since its discovery in 1965,16

Tsuji−Wilkinson decarbonylative reaction has been developed
and recognized as an important method for C−C bond
cleavage under transition metal catalysis.17 To realize the
efficient Rh-catalytic version, elevated reaction temperatures
(typically >160 °C) were indispensable (Scheme 1c).17,18

Therefore, exploiting a catalytic protocol under relatively mild
conditions for decarbonylation/deuteration reaction of alde-
hydes will be of great significance.
Given that most of the active metal−carbon bonds are

moisture sensitive, traditional transition metal catalysis is
required to be performed under anhydrous conditions.19 In
continuation of our ongoing interest in developing decarbon-
ylative functionalization,20 we envisioned that the decarbon-
ylation of aldehydes could be facilitated by water as a strong
polar solvent through dispersing the charge of high-valent
metal intermediates.19a Meanwhile, deuterium oxide (D2O) is
an ideal deuterium source in terms of its availability and cost.21
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Scheme 1. Decarbonylation and Deuteration of Aldehydes
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Herein, we report an efficient Rh-catalyzed deuterated version
of the Tsuji−Wilkinson decarbonylation of aldehydes with
D2O (Scheme 1d).
To verify our proposal, we began our study by exploring a

decarbonylative reaction using 4-biphenylcarboxaldehyde as
model substrates in the presence of Rh(acac)(CO)2 and
Xantphos with different solvents (Scheme 2). When oxygen-

containing solvents such as 1,4-dioxane, anisole, and THF were
used, the yield of diphenyl increased from 26% to 33% as the
polarity of the solvent increased.22 Probably owing to its π−π
interaction ability, the use of toluene displayed better
reactivity. With respect to the yield, water emerged as the
best choice from the examination of solvents with higher
permittivity.
Encouraged by these results, a more interesting decarbon-

ylative deuteration of aldehyde was carried out (Table 1). To
our delight, the decarbonylative deuteration product 2a was
obtained in 57% yield with >95% deuterium incorporation
after stirring at 100 °C for 90 min (entry 1). No significant
improvement was observed when the reaction was performed
at higher temperature with a prolonged reaction time (entry
2). The investigation on the additives showed that PhNO2 was
the best additive and delivered product 2a in 87% yield
(entries 3−8).23 Besides [Rh(cod)OH]2, [Rh(cod)OMe]2
showed comparable reactivity. Other catalyst precursors such
as [Rh(cod)Cl]2, Rh(acac)(CO)2 and [Ir(cod)OMe]2

24 were
not efficient at 100 °C. Notably, other decarbonylative
catalysts, such as RhCl(PPh3)3 and RhCl3·3H2O

18d and
Ni(cod)2,

25 did not afford any desired product at 100 °C
(entries 9−12 and Table S2 in Supporting Information). No
better result was observed from the evaluation of other
bisphosphine or monophosphine ligands (Table S2 in
Supporting Information (SI)). Corresponding control experi-
ments confirmed the essential roles of the rhodium catalyst and
the phosphine ligand (entries 13−14). In terms of yields, the
optimized amount of PhNO2 was 20 mol % (entries 15−16).
The yield of 2a could be increased to 97% by slightly
prolonging the reaction time and increasing the temperature
(entries 17−18).
With the optimized reaction conditions in hand, a wide

range of available aldehydes were evaluated (Scheme 3).
Aldehydes with varied skeletons (diphenyl, naphthalene,
fluorene, anthracene and pyrene) were efficiently converted
to the corresponding deuterated products (2a−2h). It was also
found that mono-, dialkoxy substituted benzaldehydes, which
mostly were naturally available substrates, were tolerated and
successfully afforded deuterium-containing molecules (2i−
2m). In addition, aldehydes with nitrogen-containing groups
(1n and 1o) also proved to be competent partners in affording
the desired product in decent yields. Higher deuterium

incorporations (e.g., 2c, 2e) could be achieved using more
D2O.
Given potential further elaborations, a range of function-

alized derivatives, including Bpin-, Cl-, and Br-substituted
aldehydes, underwent decarbonylative deuteration selectively
to provide the corresponding products 2p−2u with ≥95%
deuterium incorporations. Besides, substrates with potentially
coordinating pyridine (1v) or CN (1w) groups were also
suitable in this reaction, leading to deuterated products 2v and
2w in 78% and 66% yields, respectively. The deuterium
incorporation at the ortho positions of phenyl group on 2v
indicated that directed C−H activation26 and decarbonylation
occur simultaneously (Scheme S2 in SI). Interestingly, 4-
formylbenzoic acid could be transformed into benzoic-4-d acid
(2x) in 66% yield and 91% deuterium incorporation. The
heteroarylated aldehydes and highly electron-rich ferrocene-
carboxaldehyde also participated in this deuteration well,
giving rise to 2y, 2z, and 2aa with 67−72% yields. Notably,
cheap terephthalaldehyde could be transformed to the
corresponding expensive benzene-1,4-d2 (2bb) in 35% yield
with >95% deuterium incorporation. This deuterated method
could also be used for the late-stage functionalization of
aldehydes derived from natural products or pharmaceuticals.
For example, estrone derived aldehyde could be selectively
deuterated to furnish 2cc in 54% yield.

Scheme 2. Solvent Effects on Rh-Catalyzed Decarbonylation

Table 1. Selected Optimization Studies

aConditions: 1a (0.20 mmol), MLn (dimer 0.004 mmol or monomer
0.008 mmol), Xantphos (0.008 mmol, 4 mol %), PhNO2 (0.008
mmol, 4 mol %), D2O (1.0 M), N2 atmosphere, 90 min and 100 °C.
Yield was determined by GC-FID with mesitylene as the internal
standard. Deuterium incorporation was determined by 1H NMR
spectroscopy. b4 h, 110 °C. cWithout Xantphos. d110 °C. e120 min.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.2c04422
J. Am. Chem. Soc. 2022, 144, 11081−11087

11082

https://pubs.acs.org/doi/suppl/10.1021/jacs.2c04422/suppl_file/ja2c04422_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c04422/suppl_file/ja2c04422_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c04422/suppl_file/ja2c04422_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.2c04422?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c04422?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c04422?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c04422?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c04422?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c04422?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c04422?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c04422?fig=tbl1&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c04422?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


It is noteworthy that aliphatic aldehyde (3a) could also
undergo decarbonylative deuteration with 47% and 169% D-

incorporation. A super incorporation of deuterium (223% D,
4b) was observed for alkyl-substituted aldehyde 3b. This is

Scheme 3. Substrates Scope of Rh-Catalyzed Decarbonylative Deuteration of Aldehydes

aConditions are as follows: 1 or 3 (0.20 mmol, 1.0 equiv), [Rh(cod)(OH)]2 (2 mol %), Xantphos (4 mol %), PhNO2 (20 mol %), D2O (1.0 M),
120 °C, 8 h, N2 atmosphere. Isolated yield was given. Deuterium incorporation was determined by 1H NMR spectroscopy. bAldehyde (0.40
mmol). cD2O (0.4 M), PhNO2 (4 mol %), 16 h. dYield was determined by GC-FID with mesitylene as the internal standard. eWithout PhNO2.

f3-
NO2-C6H4CO2H (4 mol %) was used as additives. gAldehyde (0.10 mmol). hH2O (1.0 M), 90 min.
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probably due to Rh-catalyzed H/D exchanges of the starting
material 3b rather than that of the product 4b (Scheme S3 in
SI).
Tertiary aldehydes, such as N-Boc-L-phenylalaninal (3c),

gave no desired decarbonylative deuteration product. One of
the most significant synthetic challenges for current deuterated
methods was the precise construction of monodeuterium
substituted alkenes.27 In this respect, we were particularly
interested in decarbonylative deuteration of α,β-unsaturated
aldehydes. Delightfully, styrene-α,β,β-d3 (4d) was obtained
with 45% yield from α-deuterocinnamaldehyde (3d).28 This
unexpected α-deuterium incorporation probably resulted from
a reversible H/D exchange of styrene under Rh catalysis.29

Gratifyingly, several deuterated alkenes could successfully be
obtained with excellent deuterium incorporation (4e−4h),
highlighting the potential utility of this protocol. Only small
amounts of desired decarbonylation products (4i−4k) were

obtained for the aliphatic aldehydes bearing β-H. Probably due
to the β-H elimination issues of alkyl-Rh intermediate,23a the
corresponding alkenes were more easily produced (3i−3k).
This Rh-catalyzed decarbonylation can serve as a powerful and
general strategy for the selective decarbonylation of aryl-,
alkyne-aldehydes (1dd and 3l−3n) within 90 min.
To gain insight into the D2O/H2O induced Rh-catalyzed

decarbonylation, preliminary mechanistic investigations have
been conducted (Scheme 4). First, with H2O as the solvent,
diphenyl was formed in 70% yield with TOF 52.5 h−1. The use
of other organic solvents such as 1,4-dioxane, THF, DMF, and
MeOH displayed a lower TOF (Scheme 4a). Performing the
reaction with formyl deuterated aldehydes delivered the
product in 72% yield, which indicated that D/H exchange
was also a feasible pathway. No deuterium incorporation on
formyl group was observed from the recovery of starting
material 1a. It excludes the possibility of direct D/H exchange

Scheme 4. Control Experiments and Mechanistic Studies
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between aldehyde 1a and D2O. Next, when the decarbon-
ylation was carried out in a mixture of H2O and D2O, the ratio
for the formation rate of normal and deuterated products was
3.3/1, which indicated that a C−H bond cleavage or formation
step is probably the rate-determining step (Scheme 4b).
Furthermore, only CO was detected through the analysis of the
gas phase component of the reaction mixture by GC (Scheme
4c). The inertness of p-phenylbenzoic acid under standard
conditions rules out a decarboxylative reaction pathway
(Scheme 4c).20a,30 An unexpected ligand oxidation phenom-
enon has been observed during the characterization of active
Rh species for this deuterated Tsuji−Wilkinson decarbon-
ylation (Scheme 4d). First, monophosphine oxidized Xantphos
5b could be selectively obtained in 77% yield under PhNO2/
THF conditions. Interestingly, 5b or 5c was not formed in the
presence of D2O (entry 2). The addition of [Rh(cod)OH]2
could promote the bisoxidation of Xantphos (entry 3). It was
also found that D2O could inhibit the oxidation of Xantphos
(entry 4). To further confirm whether the mono-O-Xantphos
5b or bis-O-Xantphos 5c was the hidden ligand for this
reaction, corresponding control experiments on the ligand
were performed (Scheme 4e). It was found that this reaction
could only occur when Xantphos acted as a ligand. Oxidized
phosphine ligands 5b and 5c could not promote this reaction
at all. It also suggests PhNO2 should not be added too much
owing to the potential consumption of Xantphos through
oxidation. To demonstrate the scalability and efficiency of this
methodology, a scale-up reaction has been performed with a
low catalyst loading (0.2 mol % [Rh(cod)OH]2) to afford
0.698 g of 2a (Scheme 4f). It represents the best TON (113)
for decarbonylation of aldehydes under ≤120 °C condition-
s.18a,c−f,24

Based on the above results and literature precedents on
decarbonylative reactions,31 a possible catalytic cycle is shown
in Scheme 5. Initially, a ligand exchange between Rh−OH A
with D2O generates RhI−OD species B which undergoes a
subsequent oxidative addition with aldehyde 1 to yield RhIII−
H species C. This high-valent rhodium species C can be more
easily formed and stabilized with water via dispersing the

accumulative charge of rhodium complex. Meanwhile, RhIII−H
C converts into RhIII−D complex D via H/D exchange in D2O.
The presence of the OD group on RhIII−H complex C could
promote the desired ligand exchange (H to D) through the
formation of hydrogen bonding via transition state TS1 or TS2.
The positive effect of the addition of PhNO2 could probably
result from its ability on the facilitating this ligand exchange
through different hydrogen bonding. Acyl-Rh D undergoes
ligand dissociation to give Rh(III) species E with a vacant
coordination site. This spared space is beneficial for the
deinsertion of carbon monoxide to give RhIII-complex F.
Finally, a reductive elimination produces the deuterated
decarbonylation product 2 and regenerates Rh catalyst B.
Based on the observed high deuterium incorporation and
dramatic kinetic isotope effect (KIE, Scheme 4b), it suggests
the final reductive elimination might be the rate-determining
step.
In summary, an efficient Rh-catalyzed deuterated Tsuji−

Wilkinson decarbonylation reaction between D2O and
naturally available aldehydes has been achieved under relatively
mild conditions. This protocol showed a broad scope and good
to excellent deuterium incorporation. D2O not only acts as a
deuterated reagent and solvent but also promotes Rh-catalyzed
decarbonylation via dispersing the accumulative charge of
high-valent rhodium species. This decarbonylation deuteration
can provide an opportunity to conveniently obtain numerous
previously poorly available deuterated compounds from
inexpensive aldehydes. It is believed that this bifunctional
strategy could become a complementary approach to the
traditional Tsuji−Wilkinson decarbonylation and may be of
great interest to the chemists in both academia and industry.
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