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Nickel-catalyzed divergent Mizoroki–Heck
reaction of 1,3-dienes

Wei-Song Zhang1,2, Ding-Wei Ji1, Ying Li1,2, Xiang-Xin Zhang1,2, Yong-Kang Mei1,2,
Bing-Zhi Chen1,2 & Qing-An Chen 1,2

Developing efficient strategies to realizedivergent arylationof dienes has been
a long-standing synthetic challenge. Herein, a nickel catalyzed divergent
Mizoroki–Heck reaction of 1,3-dienes has been demonstrated through the
regulation of ligands and additives. In the presence of Mn/NEt3, the
Mizoroki–Heck reaction of dienes delivers linear products under Ni(dppe)Cl2
catalysis in high regio- and stereoselectivities. With the help of catalytic
amount of organoboron and NaF, the use of bulky ligand IPr diverts the
selectivity from linear products to branched products. Highly aryl-substituted
compounds can be transformed from dispersive Mizoroki–Heck products
programmatically. Preliminary experimental studies are carried out to eluci-
date the role of additives.

The transformation of metal aryl species is one of the most important
topics inmodern organometallics1–4. Taking advantage of the diversity
frommetal aryl species, a variety of valuable name reactions have been
discovered to accomplish different arylations5–8. Among them,
Mizoroki–Heck reaction has been recognized as anelegant strategy for
carboarylations of alkenes9–13. However, most of current
Mizoroki–Heck reactions focused on the arylation ofmono alkenes14–22

or using noble palladium catalysts23 (Fig. 1a). Therefore, it is of great
interest to developdivergent arylations ofmorechallengingmolecules
under earth abundant metal catalysts.

As extensive feedstocks in nature and industry, the catalytic
functionalization of 1,3-dienes is a straightforward strategy to build up
the molecular complexity24–37. However, compared with that of mono
alkenes, the arylation of dienes brings extra challenges in selective
control owing to the existence of an additional C =C bond38–40. Theo-
retically, tremendous arylation products (Heck, hydroarylation41–46,
and diarylation47–58 products) with different regio- and stereo-isomers
would be expected to be observed through the coupling of aryl halides
and dienes. Under Ni/Cr cocatalysis, we previously developed selective
diarylation of 1,3-dienes. Besides the desired diarylation product,
minor Heck or hydroarylation products were also observed (Fig. 1b)59.
Similar side-products have also been observed by Koh et al. in their
recent work on diarylation of aliphatic 1,3-dienes60. Inspired by these
precedents40–59, we envisioned whether it would be possible to divert
the reactivity of Ni−Ar species from diarylation to Heck reaction of

dienes. Given the four reactive sites of 1,3-dienes, it will alsobepossible
to obtain divergent regioisomers on Heck reaction.

Here, we develop a divergent Heck reaction of 1,3-dienes under
nickel catalysis (Fig. 1c). Programmable transformations from dis-
persive Heck products have been demonstrated to construct a series
of highly aryl-substituted compounds.

Results
Reaction optimization
Aryl triflate 1a and diene 4a were chosen as model substrates for the
investigation of divergent Heck reactions under nickel catalysis
(Table 1). In the presence ofMn, a small amount of linearHeckproduct
5a (9% yield) was detected using Ni(dppe)Cl2 as catalyst precursor
accompanied by trace of branched Heck product 6a (1% yield) and
hydroarylated products 7–9 (5% yield, entry 1). With the addition of
NEt3, the yield of product 5a was increased from 9 to 15% (entry 2).
Obvious impact on reactivity and selectivity was observed through the
evaluation of other leaving groups (entries 3 and 4). When
4-methoxyphenyl triflate 1a was replaced by 4-iodoanisole 3a, 40%
yield of 5a was obtained with excellent selectivity (entries 2 vs 4). As
the amount of NEt3 increased (MeCN/NEt3 = 9:1), the yield of 5a could
be improved to 63% in the presence of less manganese powder (entry
5). Given their ability in promoting the circulation of Ni catalyst, some
inorganic salts were added to facilitate the reaction (entries 6 and 7)61.
In terms of reactivity, NaCl emerged as the preferred additive for the
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formation of 5a (81% yield). Control experiments further confirmed
that nickel was indispensable for this reaction (entry 8). Without the
Mn powder, the yield of 5a decreased significantly (entry 9).

When the reaction was conducted with Ni(0) precursor, it exhib-
ited the similar results with that in the presence of Ni(II)/Mn combo
(entry 10 vs 1). Replacing NEt3 with Cs2CO3 as base slightly increased
the yield of 6a and inhibited the formation of linear product 5a (entry
11). With the aid of ligand IPr, milder condition (40 °C) and higher yield
(31%) was achieved in the presence of catalytic amount of (Bpin)2
(entries 12 and 13). Then, through the screening of various solvents and
bases, 1,4-dioxane as solvent brought poor selectivities of 5a and 6a.
But there was not much difference between DMF and MeCN (entries
13–15). When Cs2CO3 was replaced by KOEt or LiOMe, undesirable
hydroarylation and diarylation products increased distinctly (entries
16 and 17). Notably, the addition of catalytic amount of KOtBu could
further promote the reaction (46% yield of 6a) (entry 18). Arylboron
(B1) showed more effective when compared these results with other
organoboron agents (entry 19 and see SI for details). A combination of
B1 and NaF led to an increase in the yield of 6a (74% yield) in DMF/
Hexane (3:2 v/v) (entry 20).

Substrate scope
With the optimized conditions in hand, we subsequently explored the
scope of substrates in this divergent approach (Fig. 2). For linear Heck
reaction, the 1,3-dienes bearing electron-donating groups on the aro-
matic ring, including Me (5b, 5h-5j), Et (5c), tBu (5d), NMe2 (5 g), all
reacted with 4-iodoanisole smoothly and delivered the corresponding
products in moderate to good yields with excellent selectivities. In
comparison, electron-deficient substrates showed slightly low stereo-
selectivities (5e and 5f). Notably, naphthyl and furyl substituted 1,3-
dienes were also compatible with this transformation, leading to 1,4-
diaryldienes in 70 and 72% yields, respectively. In addition, when using
aliphatic 1,3-dienes (E/Z = 1/1) for the coupling with 4-iodoanisole,
product 5m could be successfully afforded in 66% yield and

9:1 stereoselectivity. Satisfyingly, the reaction also proceeded with
naked 1,3-butadiene, which may provide an alternative route for the
synthesis of 1-arylbutadienes and avoid the huge waste during tradi-
tionalWittig reactions. Not only themono-substituted dienes, but also
the 5o could be obtained from 1,2-disubstituted diene with high yield
and selectivity under the standard condition. Lower reactivities and
selectivitieswere obtained for isoprene and 1,3-disubstituteddiene (5p
and 5q).

Then the iodoarene substrates were explored (Fig. 2b). A variety
of iodoarenes bearing electron-withdrawing and electron-donating
groups all underwent the desired cross-coupling smoothly. Generally,
the corresponding linear Heck products were obtained with good to
excellent yields, high stereoselectivities and exquisite regioselec-
tivities (5r−5 y and 5aa−5hh, 60−92% yields). However, the coupling of
methyl 4-iodobenzoate with 1,3-diene displayed moderate stereo-
selectivity (5z/5z′ = 84/16). It should be noted that the bromo group,
which could offer useful handles for further synthetic manipulations,
was well compatible under the current conditions (5w). Additionally,
substrates bearing sensitive groups, such as carboxylic acid, aldehyde,
unprotected indole and pyridines (5aa, 5ee, and 5ff-5hh), were all
applicable, highlighting the general tolerance of this nickel catalysis.
To illustrate the practical utility of this strategy, a scale-up experiment
under the standard conditions was performed to afford the corre-
sponding product 5s in 1.05 g with 85% yield.

Next, we sought out to assess the substrate scope towards bran-
ched arylation. In order to facilitate the separation of products and
additives, 4-cyanophenylboron B2 was used instead of B1 in some
cases. As illustrated in Fig. 2c, dienes with either electron-donating or
electron-withdrawing substituents at the 4-position of phenyl ring all
reacted with diene 4a in good reactivities and excellent regio- and
stereo-selectivities (6a−6f, 59–81% yields). In addition, 1,3-diene pos-
sessing ester group was well tolerated in this case, but minor hydro-
arylation product could be observed (6g/6g″ = 92:8). Similar to linear
Heck reactions, aliphatic-1,3-dienes was also well applicable to this
strategy (6h and 6i). Depending on the E/Z ratio of diene substrates,
the stereoselectivities of aliphatic products would be maintained.
Although the less impressive result (6j) was obtained for 1,4-dis-
ubstituted diene, 1,1′-diaryl-1,3-dienes showed good reactivities and
regioselectivities for the current transformations and were not affec-
ted by steric hindrance of another aromatic ring (83% yield for 6k and
86% yield for 6l).

Meanwhile, the scope of aryl triflates in coupling with dienes was
investigated under the Ni/IPr catalysis (Fig. 2d). Generally, the reaction
exhibited no obvious loss in both reactivities and selectivities when
electron-rich or electron-deficient were subjected (6m, 6n, 6o and 6t-
6v). Good yields and selectivities could also be achieved even when
ortho-substituted aryl triflates were employed, regardless of their
steric hindrance (6n and 6o). In addition, substrates derived from
estrone and diethylstilbestrol could also react smoothly to obtain
corresponding branched products (6w and 6x).

Consecutive Heck reaction could even proceed from common
material to deliver a hybrid of linear and branched diene (Fig. 2e).
Under condition A, linear diene 5n could be synthesized from
4-Iodoanisole and 1,3-butadiene with 36% yield in 1mmol scale. Using
bifunctional coupling reagent 4-iodophenyl triflate, nickel catalysis
could selectively cleave C−I bond rather than C−Obond in condition A
to yield (E,E)−1,4-diarydiene 5ii. Without the influence of the two C=C
bonds of 5ii, polyene 6 y bearing linear and branched dienemotifs was
constructed in 71% yield under condition B.

Transformations
To demonstrate the synthetic utility of the diarylation products, con-
cise syntheses of highly aryl-substituted compounds were performed
from linear and branched dienes 5 and 6 (Fig. 3a). Through a Ni-
catalyzed dehydrogenative [4 + 2] cycloaddition between nitrile and
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Fig. 2 | Substrate scope towards divergent Heck reactions. a Substrate scopes of
dienes for linear products. b Substrate scopes of Ar-I for linear products.
c Substrate scopes of dienes for branched products. d Substrate scopes of Ar-OTf
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MeCN/NEt3 (5.0mL/0.60mL = 9:1); jAr-I (0.60mmol), 5n (0.40mmol), MeCN/NEt3
(1.0mL/0.11mL = 9:1).
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branched arylated product 6m, diaryl- and triaryl pyridines (11a and
11b) could be accessed with 42 and 56% yields respectively62. Multi-
substituted benzenes (12a and 12b) were easily synthesized from 5 s
and 6m in 92 and 74% yields via Diels-Alder reaction and oxidation in
one pot63. Meanwhile, diaryl thiophenes (13a and 13b), which were
potential pesticides, could also be accessed by anoxidative cyclization
from inorganic sulfurating reagents K2S and diene 5a or 6a. Under
nickel catalysis64, the hydroarylations of linear diene 5 s smoothly
delivered diarylated products 14a and 14b which could be further
converted to polyaryl thiophene 15 and naphthalene 1664,65.

On the other hand, the linear poly (hetero)aromatic compounds,
as important components of quasi-one-dimensional conducting
polymers66, could be constructed programmatically from simple
starting materials. The chemoselective coupling of bifunctional
reagent 4-iodophenyl triflate with 1-phenyl-1,3-diene yielded the
desired aryl triflate 17. Subsequent Suzuki reactions of 17withdifferent

(hetero)arylboronic acid gave ploy (hetero)aryl dienes 18 and 1967.
Through oxidative cyclizations, linear poly (hetero)aromatic com-
pounds 20 and 21 were finally obtained in 96 and 64% yields
(Fig. 3b)63,64.

Mechanistic investigations
Corresponding control studies were carried out to shed light on the
mechanistic insights. The chemoselectivities and regioselectivities of
Ni catalysis on two leaving groups (I or OTf) were investigated under
standard conditions A and B. Although good yield of 5a was obtained
for PMP-I 3a in condition A, no expected product 5a or 6a was
observed under condition B (Fig. 4a, entries 1 and 2). For aryl triflate 1a,
less Heck product 5a was found in condition A than that of PMP-I 3a
(entries 3 vs 1). Moreover, branched product 6a became the only
product instead of 5a in condition B (entries 4 vs 3). These control
experiments suggest that, the reactivity of linear arylation is positively
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Fig. 3 | Divergent and programmable synthetic transformations of dienes. a Divergent constructions of highly aryl-substituted compounds. b Programmable con-
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correlated with the leaving ability of substituted group (I and OTf).
While for branchedHeck reaction, this reaction is chemospecific to the
leaving group. In addition, regioselectivity is regulated by ligand or
additives other than leaving groups.

When submitting a Z/Emixture of diene isomers (4a/4a′ = 1/1 and
4b/4b′ = 1/2) to the Heck reaction conditions, only E products 5a and
6a were deserved and the yields were similar to that of results using
(E)-substrates (Fig. 4b). Through the analysis of the recovered starting
materials, the E/Z ratio of diene 4a did not change significantly under
condition A, but only (E)-diene 4b was recovered in 5% yield. In the

absenceof triflate 1a, only (E)-4bwas recoveredunder conditionB. The
strong stereoconvergent effect implies that an interconversion
between η1-allyl nickel and η3-allyl nickel species might be involved in
the catalytic cycle of linear Heck reaction. And it indicates a fast iso-
merization from cis- to trans-diene 4 could occur in branched Heck
reaction. From the evaluation of NHC ligands (Fig. 4c), the less bulky
ligand IMes displayed lower regioselectivity and reactivity (L2 vs L1).
But as the steric hindrance increases on one side of the ligand, the
selectivity and yield would be slightly promoted (L3 vs L2). When L1
was replaced by L4 which shows the only difference in donor

I: B1 in DMF

II: Ni(OTf)2 in DMF

III: Ni(OTf)2/B1 (1:1) in DMF

IV: Ni(cod)2/B1(1:1) in DMF
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properties, the yieldof6adecreased a little bit but the selectivity could
still bemaintained. It indicated that the steric hindrance of ligand has a
more significant effect on the regioselectivity than electronic effect.
There was no obvious reaction with the addition of L5 or L6 and it
seems that the skeleton of ligand has a decisive influence on the
reactivity. These conclusions have been supported by previous theo-
retical study68. Possibly due to energy differenceof insertion transition
states69, the use of phosphine ligands and bulky NHC ligands displayed
the opposite selectivities.

Next, further studies have been performed to capture possible
intermediates and verify the effects of additives in this divergent Heck
reaction. For linear Heck reaction of diene, treating stoichiometric
NiII(dppe)Cl2 with Mn powder in MeCN/NEt3 successfully provided
Ni0(dppe)2 which structure was confirmed through X-ray analysis
(Fig. 4d). With the aid of this prepared Ni0 precursor Ni(dppe)2, the
Heck reaction coupling between 3a and 4a could also proceed
smoothly to deliver product 5a in 45% yield. Based on these observa-
tions, the linear Heck reaction might be initiated by the formation
Ni(0) species in situ. Meanwhile, NEt3 has shown important effect
on enhancing the reactivity of current Ni-catalyzed linear Heck reac-
tion (Table 1). Thus, 31P NMR spectra of control experiments were then
performed to probe the role of NEt3. As depicted in Fig. 4e, the che-
mical shift of Ni(dppe)Cl2 in MeCN was found at 59.44 ppm. No new
signal or chemical shift was found after the addition of Mn to the
Ni(dppe)Cl2 solution, indicating the difficulty of the Ni(II) precursor to
be reduced to Ni(0) species byMnpowder alone in this case. However,
a new peak at 43.87 ppm, which should be assigned to Ni0(dppe)2
complex, could be successfully detected when NEt3 was loaded.
Therefore, this unexpected reduction indicates that NEt3 not only
served as a base in this transformation, but also may facilitate reduc-
tion process of NiII precursor to Ni(0) species.

For branchedHeck reaction, organoboron also plays a crucial role
on reactivity. Diboron compounds have been previously suggested to
reduce NiII to Ni051,54. Using Ni(OTf)2 instead of Ni(cod)2 as catalyst
precursor, aryl boron (B1) did not show the same positive effect as
diboron (B2neop2) (Fig. 4f, entries 1 vs 2). It suggests that NiII could not
be reduced effectively by aryl boron. In the absence of organoboron
additive, chelated solvent dimethoxy methane (DMM) favored the
formation of 6a than DMF and MeCN (Fig. 4f, entries 3–5). Given the
structural similarity between boron ester and DMM, it indicates that
boron ester probably promote reaction through chelation on Ni cat-
alyst. To figure out the role of aryl group on additive B1, nonreductive
iPrOB(OMe)2 was used instead of B1 for branched dehydroarylation.

The desired reaction occurred in the presence of the catalytic amount
of NaF or KOtBu and the latter gave a higher yield (Fig. 4f, entries
6–8)70. These results indicate that ionic ployalkoxyborate better pro-
motes the branched Heck reaction than neutral organoborate. It also
rules out the reductant role of arylboronB1 for Ni catalyst. Meanwhile,
19F NMR studies of control experiments were performed to further
confirm the chelation effect of borate (Fig. 4g). The addition of
Ni(OTf)2 to B1 in DMF led a clear change from −110.67 ppm to −109.76
ppm in 19F NMR spectra (Fig. 4g, I vs III). This downfield shift probably
resulted from a decrease of electron density on fluorine atom of B1.
However, there was no obvious change on chemical shift of 19F NMR
signal by mixing Ni(cod)2 with B1 in DMF. It suggests anionic organo-
borate preferentially coordinate with cationic NiII species rather than
neutral Ni0 complex in the catalytic cycle.

On the basis of the above observations, a plausiblemechanism for
the divergent arylation via nickel catalysis was proposed (Fig. 5). For
linear Heck reaction, catalyst precursor Ni(dppe)Cl2 is reduced to give
active Ni(0) speciesA in situ byMn powder andNEt3. Subsequently, an
oxidative addition of iodoarene 3 with A yields aryl-Ni(II) complex B.
Then, migratory insertion between complex B and 1,3-diene 4 gives
allyl-nickel complex C or its ƞ3 coordinated form E. Next, final β-H
elimination from complex C affords linear Heck product 5 and NiII

species D. With the aid of Mn and NEt3, Ni
0 catalyst A is regenerated

from NiII species D to complete the catalytic cycle.
For branched Heck reaction promoted by IPr ligand (Fig. 5, right),

cationic Ni(II) speciesB′ is initially obtained froman oxidative addition
of aryl triflate 1 with A. Meanwhile, the reaction of organoboron with
base (NaF or KOtBu) produces alkoxyborate E. Then a chelation of
cationic NiII species B′ with anionic organoborate E′ forms Ni(II) com-
plex F′. A subsequentmigratory insertion of diene 4 intoNi-Ar F′ yields
an alkyl-nickel (II) species C′. The steric hindrance between bulky
ligand IPr and allylic motif impedes the formation of isomer C. After-
wards, product 6 and NiII species D′ can be obtained through β-H
elimination fromcomplexC′. With the help of Cs2CO3, a final reductive
elimination from allyl-NiIII speciesD′ regenerates the Ni0 catalystA and
alkoxyborate E′ for next catalytic cycle. It will be more challenging to
realize the 1- and 2-arylation of dienes which probably requires special
substrate or catalyst design.

Discussion
In this work, a divergent Heck reaction of 1,3-dienes with Ar-X (X = I or
OTf) is developed under Ni catalysis. Through the regulation of dppe
ligand, linear Heck products are successfully obtained in presence Mn
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and NEt3. The selectivity of reaction is efficiently switched to branched
products by the combinationofNi(cod)2/IPr and alkoxyborate. A series
of highly aryl-substituted compounds are constructed program-
matically and concisely from our protocol. Besides, preliminary
mechanistic studies provide clues for possible catalytic pathways and
the role of additives. Further studies and application on this divergent
arylation of dienes are underway in our laboratory.

Methods
General procedure for Ni-catalyzed linear Heck reaction of 1,3-
dienes
In a glove box, a sealed tube was charged with iodoarene 3
(0.40mmol), Ni(dppe)Cl2 (0.02mmol, 10mol%), Mn (0.20mmol, 1.0
equiv.), NaCl (0.60mmol, 3.0 equiv.), 1,3-diene 4 (0.20mmol), MeCN
(0.5mL), NEt3 (56μL) at room temperature. The reaction tube was
sealed with a Teflon screw cap, removed from the glove box. Then, the
reactionmixture was stirred at 80 °C for 24 h. The ratio of 5 and 5’was
determined by GC-FID analysis. And the crude reaction mixture was
purified by column chromatography on silica gel or recrystallization
using petroleum ether and dichloromethane to afford the corre-
sponding product 5.

General procedure for Ni-catalyzed branched Heck reaction of
1,3-dienes
In a glove box, Ni(cod)2 (0.02mmol, 10mol%), IPr·HCl (0.024mmol,
12mol%), Cs2CO3 (0.30mmol, 1.5 equiv.), and B1/NaF (0.04mmol,
20mol%) were added to DMF (0.30mL) in sequence and stirred at
room temperature for 30min. Then, the mixture of aryl triflate 1
(0.20mmol), 1,3-diene 4 (0.30mmol) in hexane (0.20mL) was added
into the reaction solvent. The reaction tube was sealed with a Teflon
screw cap, removed from the glove box. And the reactionmixture was
stirred at 40 °C for 18 h. The selectivity was determined by 1H NMR
analysis. And the crude reaction mixture was purified by column
chromatography on silica gel or recrystallization using petroleum
ether and ethyl acetate to afford the corresponding product 6.

Data availability
The X-ray crystallographic data for compound Ni(dppe)2 has been
deposited in the Cambridge Crystallographic Data Centre (CCDC),
under deposition number CCDC 2095730, [https://www.ccdc.cam.ac.
uk/structures/]. Data relating to the characterization data of materials
and products, general methods, optimization studies, experimental
procedures, mechanistic studies and NMR spectra are available in
the Supplementary Information. All data are also available from the
corresponding author upon request.
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