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In this article, we disclose a method for the regiodivergent and stereoselective hydrosilylation of isoprene

using an Earth-abundant cobalt catalyst via variation of ligands. With a less sterically hindered bidentate ligand,

the reactions proceeded through 4,1-hydrosilylation to afford allylsilanes in excellent regio- and stereoselectiv-

ities. By switching to a bulkier ligand, the reactions were efficiently diverted to 2,1-addition products for the

first time. This regiodivergent protocol provides a modular approach for the construction of structurally diverse

organosilanes with high atom economy and without the formation of stoichiometric byproducts.

Owing to the abundance of silicon in the Earth’s crust and the
unique stability of C–Si bonds, organosilicon compounds have
been extensively applied in materials science,1 medicinal chem-
istry,2 and organic synthesis.3 During the past decades, catalytic
hydrosilylation of unsaturated C–C bonds has been established
as one of the most straightforward methods and atom-economi-
cal approaches for the preparation of value-added organosi-
lanes.4 In this context, tremendous efforts have been made
toward the Markovnikov or anti-Markovnikov hydrosilylation
reactions of alkenes5 and alkynes.6 These reactions currently are
not only utilized on the laboratory scale, but also have been
widely implemented in the chemical industry. In contrast, the
catalytic hydrosilylation reaction of 1,3-dienes is continuously
complicated by regioselectivity issues and side reactions such as
olefin isomerization7 and silane dehydrocoupling.8 In recent
years, the catalytic hydrosilylation reactions of 1-substituted 1,3-
dienes are successively explored and some robust protocols have
been developed.7–9 However, few examples involved the selective
addition of Si–H bonds to internally substituted dienes.
Particularly, due to the weak electronic and steric effect of the
methyl substituent, the regioselective hydrosilylation reaction of
isoprene is an extremely challenging task (Scheme 1a).9f,10 In
most cases, the reported hydrosilylation reactions of isoprene
produced a mixture of isomers with poor to moderate regio-
selectivity (<10 : 1 rr).11 Very limited examples were exploited
successfully with good regioselective control.9d,12

The cobalt-catalyzed transformations have gained ever-
growing attention due to the lower cost and toxicity of cobalt
in comparison with other precious transition metals.13 In

Scheme 1 Catalytic regioselective hydrosilylation of isoprene.
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2004, Hilt’s group reported an example of cobalt-catalyzed 1,4-
hydrosilylation of isoprene with (EtO)3SiH using P(nBu)3 as the
ligand.12c Later, Fout et al. also developed a bis(carbene)
cobalt(I)-dinitrogen complex to enable an efficient 3,4-hydro-
silylation reaction of isoprene.12f In 2017, RajanBabu and co-
workers disclosed that moderate 1,4-selectivity could be
achieved in a Co-catalyzed coupling reaction between phenylsi-
lane and isoprene using the tridentate ligand PDI at −78 °C
(Scheme 1b).9d Although these advancements were achieved,
the development of regiodivergent methodologies for control-
lable hydrosilylation of isoprene is rather rare. Moreover, no
precedents on catalytic 2,1-hydrosilylation of isoprene have
been successfully realized to date. Recently, we explored an
iron-catalyzed regiodivergent hydrosilylation reaction of iso-
prene, where the regioselectivity could be efficiently regulated
by the bidentate or tridentate nitrogen ligand, respectively.12g

As an extension of our continuous research in regiodivergent
catalysis,14 herein we report a Co-catalyzed protocol for regio-
controllable 4,1- and 2,1-hydrosilylation of isoprene by modify-
ing the substituents in bidentate nitrogen ligands
(Scheme 1c).

Diphenylsilane (1a) and isoprene (2a) were initially chosen
as the model substrates to test our hypothesis using Co(acac)3
as the precatalyst with various pyridine imine ligands. As
shown in Table 1, with a simple bidentate pyridine imine L1,

the C–Si coupling reaction gave the hydrosilylation products in
76% yield with good 4,1-selectivity (3a, entry 1). To our delight,
the ligand L2 which bears a methyl group at the ortho-position
of the pyridyl ring dramatically switched the reaction regio-
selectivity to 2,1-addition (4a, entry 2). This result encouraged
us to further examine the substituent effect on ligands (L3–
L8). Pleasingly, a good yield of 4a could be obtained with the
regioselectivity being maintained in the presence of ortho-
propyl pyridine imine L4. Upon increasing the bulkiness of
the ortho-substituents of the pyridyl motif on ligands, however,
the reactions became comparably sluggish (entries 5–8).
Moreover, replacing the isopropyl group with methyl at the
N-phenyl ring would decrease the reactivity and selectivity of
the 2,1-adduct 4a (entry 9). Other commonly used reductants,
such as AlMe3, ZnEt2 and PhMgBr, were also investigated.
However, these employed reductants were all less effective
than NaBEt3H (Table S3†). In addition, to improve the yield of
3a, solvents were evaluated in the presence of L1 (Table S2†).
Pleasingly, the yield of 3a was sharply improved with excellent
4,1-selectivity when the hydrosilylation reaction was conducted
in n-hexane (entry 10).

With the optimized reaction conditions established, the
substrate scope of silane was then examined (Table 2). In the
presence of L1, the reactions with substrates bearing electron-
donating substituents at the para-position of the phenyl ring
all proceeded smoothly to produce the 4,1-addition products
3a–3e in good yields and high regioselectivities. The substrates
with halide groups on the phenyl unit, such as fluoro and
chloro, were tolerated as well and the corresponding products
3f and 3g were obtained in 25% and 65% yields, respectively.
Substituents with a methyl group on the meta- or ortho-posi-
tion of the phenyl ring afforded the corresponding products
3h and 3i successfully with good selectivities. Due to steric
hindrance, an erosion of reactivity was observed when the reac-
tion was conducted with a structurally hindered substrate (3j).
On replacing the phenyl group with the 1-naphthalenyl ring,
the substrate was transformed into product 3k in 65% yield.
Alkyl-substituted silanes could be applied in the current 4,1-
hydrosilylation reaction as well, albeit with decreased yields
and selectivities (3l–3o). Besides dihydrosilanes, the phenylsi-
lane was also accommodated, generating the product 3p in
43% yield. However, the reactions with tri-substituted silanes,
such as triisopropylsilane and triethoxysilane, were completely
unproductive (3q and 3r).

Next, we switched our attention to the substrate generality
of 2,1-hydrosilylation under Co catalysis (Table 3). With the aid
of Co/L4, diphenylsilanes with various substituents at the
phenyl ring could react with isoprene and afford the corres-
ponding 2,1-addition products (4a–4j). In most cases, sub-
strates with either electron-donating or electron-withdrawing
groups were amenable for the current transformation and deli-
vered products in good yields and decent regioselectivities (4a–
4e, 4g and 4h). Substrates with a fluoro group were comparably
sluggish (4f ). Delightfully, silanes with an ortho-substituted
group on the phenyl rings could react with isoprene smoothly
under the current conditions (4i and 4j). 1-Naphthyl substi-

Table 1 Optimization of the reaction conditions

Entry Ligand Total yielda

Selectivitya

3a 4a 5a Others

1 L1 76% 93 0 0 7
2 L2 74% 5 81 0 14
3 L3 89% 5 81 5 9
4 L4 90% 4 92 0 4
5 L5 37% 11 70 5 14
6 L6 65% 2 91 3 4
7 L7 15% 46 34 20 0
8 L8 30% 23 67 10 0
9 L9 62% 19 81 0 0
10 L1b 86% 94 0 2 4

Conditions: 1a (0.20 mmol), 2a (0.30 mmol), Co(acac)3 (5 mol%), L
(5 mol%), NaBEt3H (10 mol%), THF (0.5 mL), 40 °C, 2 h, N2.
aDetermined by 1H NMR with 1,3,5-trimethylbenzene as the internal
standard. b In nhexane (0.5 mL).
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tuted silane exhibited good reactivity and led to 4k in 72%
yield. The reactions with alkylphenylsilanes could produce 2,1-
hydrosilylation products with decreases in yields (4l–4o).
While the reaction with phenylsilane resulted in a complicated
mixture of isomers (4p), triisopropylsilane and triethoxysilane
were not reactive under the current conditions (4q and 4r).

To demonstrate the utility of our methods, gram-scale reac-
tions were carried out (Scheme 2). Under the optimal con-
ditions, 4,1-addition and 2,1-addition products could be
afforded in 1.00 g with 79% yield (3a) and 1.04 g with 82%
yield (4a), respectively. And both regioselectivities were main-
tained well on the gram-scale.

To gain insight into the mechanism, we conducted deuter-
ium-labeled experiments (Scheme 3a). Using deuterated silane
(Ph2SiD2, d2-1a) as the substrate, 4,1- and 2,1-hydrosilylation
reactions were performed under the standard conditions. For
the 4,1-addition reaction, 70% yield of the product was

obtained without obvious deuterium scrambling (90% of deu-
terium at Si and 76% of deuterium at the terminal allylic posi-
tion in 3a–d). Similarly, deuterium incorporation was only
observed at the allylic position of 4a–d. These observations
indicate that the alkene insertion step was highly regiospecific.
In addition, the mutual transformation reactions between 3a

Table 2 Substrate scope for Co-catalyzed 4,1-hydrosilylation

Conditions: 1 (0.20 mmol), 2 (0.30 mmol), Co(acac)3 (5 mol%), L1
(5 mol%), NaBEt3H (10 mol%), hexane (0.5 mL), 40° C, 2 h, N2.
Isolated yields of combined regiosomers are given in all cases. The
regioselectivity is given in parentheses (3 : 4 : 5:others). a Accompanied
by a small amount of inseparable silane 1, the yield of the product has
been adjusted accordingly.

Table 3 Substrate scope for Co-catalyzed 2,1-hydrosilylation

Conditions: 1 (0.20 mmol), 2a (0.30 mmol), Co(acac)3 (5 mol%), L4
(5 mol%), NaBEt3H (10 mol%), THF (0.5 mL), 40 °C, 2 h, N2. Isolated
yields of combined regioisomers are given in all cases. The regio-
selectivity is given in parentheses (3 : 4 : 5:others). If applicable, pro-
ducts were all obtained in 1 : 1 dr.

Scheme 2 Gram-scale reactions for regiodivergent hydrosilylation of
isoprene.

Research Article Organic Chemistry Frontiers

2206 | Org. Chem. Front., 2023, 10, 2204–2210 This journal is © the Partner Organisations 2023

Pu
bl

is
he

d 
on

 2
3 

M
ar

ch
 2

02
3.

 D
ow

nl
oa

de
d 

by
 D

al
ia

n 
In

st
itu

te
 o

f 
C

he
m

ic
al

 P
hy

si
cs

, C
A

S 
on

 5
/8

/2
02

3 
3:

15
:4

5 
A

M
. 

View Article Online

https://doi.org/10.1039/d3qo00041a


and 4a showed that these products remained intact under the
standard conditions, suggesting that the formation of hydro-
silylation products should be irreversible (Scheme 3b).

Based on the above results and previous reports,15 a plaus-
ible reaction mechanism is proposed (Scheme 3c). In the pres-
ence of NaBEt3H, cobalt(I) hydride species A may be initially
delivered. When reactions were performed with the less bulky
ligand L1, the hydride species A may interact with Ph2SiH2 to
form the silylcobalt(I) intermediate B. Moreover, the smaller
ligand L1 may also favor the formation of the bis-coordination
intermediate C with isoprene 2a. After that, the 4,1-insertion
of the Co–Si bond occurs and produces the intermediate D.
Next, the four-centered transient complex E leads to the 4,1-
hydrosilylation product 3a and regenerates the silylcobalt(I)
species B. On the other hand, in the presence of the bulky
ligand L4, the intermediate B may be unfavorable due to steric
hindrance. Instead, the reaction may initiate with Co–H inser-
tion between the cobalt(I) hydride species A and isoprene (via
Int F). Considering that the methyl group is an electron-donat-
ing substituent that can make the di-substituted double bond
electron richer, the cobalt(I) hydride A may preferentially coor-
dinate with the methyl-substituted double bond of isoprene
and lead to 2,1-selectivity. Subsequently, a homoallylcobalt
intermediate G is yielded and followed through a four-centered
transient complex H to produce the 2,1-hydrosilylation
product 4a and release the cobalt(I) hydride species A.

In conclusion, we have developed a cobalt-catalyzed
method to achieve regiodivergent selectivities in isoprene
hydrosilylation reactions by ligand regulation. The use of a

simple bidentate imine ligand L1 efficiently promoted the for-
mation of 4,1-hydrosilylation products, whereas the presence
of a bulkier bidentate nitrogen ligand L4 diverted the regio-
selectivity toward 2,1-hydrosilylation which was reported first.
This protocol also features high atom economy without stoi-
chiometric byproduct formation. Further applications of this
ligand-controlled regiodivergence in olefin hydrofunctionaliza-
tion are currently underway in our laboratory.
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