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ABSTRACT: An aerobic photoepoxidation of α,β-unsatu-
rated ketones driven by visible light in the presence of
tetramethylguanidine (3b), tetraphenylporphine (H2TPP),
and molecular oxygen under mild conditions was revealed.
The corresponding α,β-epoxy ketones were obtained in yields
of up to 94% in 96 h. The reaction time was shortened to 4.6
h by flow synthesis. The mechanism related to singlet oxygen
was supported by experiments and density functional theory
(DFT) calculations.

■ INTRODUCTION

Visible light-driven photocatalysis is a promising route for 21st
century organic chemistry and has attracted much attention in
recent years.1−4 Epoxy ketones are among the most versatile
building blocks in organic synthesis and provide intermediates
for natural products or biologically active compounds,5,6 such
as manumycin A,7,8 epoxyquinol,9 panepophenanthrin,10 and
nisamycin.11 This wide range of interesting applications has
promoted the development of methodologies for the synthesis
of epoxy ketones.12−18 Catalytic epoxidation using molecular
oxygen as oxidant19−25 is an attractive and potential method,
which is inexpensive, convenient, and environmentally benign.
Using molecular oxygen as an oxidant is a longstanding

strategic subject,26−29 and significant achievements in aerobic
epoxidation have been made.30−34 Nevertheless, most
reports35−39 have used metallic compounds/additives or
metallic catalysts/coreductants (such as Et2Zn/amino alco-
hol,35 Co(II)TPP-OCH3/isobutyraldehyde,

36 and Mn(TPP)-
OAc/isobutyraldehyde37) (Scheme 1a), which always lead to
metal residue and poor atom economy. Only a limited number
of reports40,41 related to the catalytic epoxidation of α,β-
unsaturated ketones with molecular oxygen as the oxidant in
the absence of metallic compounds have been reported. In
2013, Norio Shibata and his co-workers reported an aerobic
epoxidation of β-trifluoromethyl-β,β-disubstituted enones
induced by methylhydrazine.40 They proposed that the key
to this success was the unique behavior of H2NNHMe for
generating hydrogen peroxide in the presence of molecular
oxygen and a base (Scheme 1b). H2NNHMe was ultimately
converted into methane. In the same year, Akichika Itoh and
his co-workers developed another method for the epoxidation
of α,β-unsaturated ketones in two steps. First, i-propanol was
oxidized by molecular oxygen catalyzed by anthraquinone-2-

carboxylic acid in the presence of visible light. Synchronously,
hydrogen peroxide was generated and used as the direct
oxidant for the following oxidation of α,β-unsaturated ketones
after a base and substrates were added (Scheme 1c).41

Photosensitization is an effective method to generate excited
singlet oxygen (1O2) and provides great opportunities to make
the protocol simpler, greener, and sustainable, having a bright
prospect for its various applications.42−50 Especially, the
reactions of alkenes with singlet oxygen are familiar,51−55

such as Schenck−ene reactions,56,57 [2+2]-cycloadditions,58

[4+2]-cycloadditions,59−61 and epoxidations.62−64 However, to
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Scheme 1. Aerobic Epoxidation of α,β-Unsaturated Ketones
Using Molecular Oxygen as the Oxidant
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the best of our knowledge, there is still a lack of methods for
the one-step epoxidation of α,β-unsaturated ketones with
molecule oxygen as the oxidant by photocatalysis in the
absence of metallic compounds. Here, an epoxidation of α,β-
unsaturated ketones in the presence of tetramethylguanidine,
H2TPP, and molecular oxygen under visible light is reported
(Scheme 1).

■ RESULTS AND DISCUSSION
As a part of our ongoing study on photooxidation,65,66 we
attempted to extend the methods reported65,66 to the
epoxidation of α,β-unsaturated ketones by using molecular
oxygen as the oxidant. First, we attempted to undertake the
enantioselective epoxidation of chalcone 1a (0.1 mmol) in
toluene in the presence of PTC (10 mol %, reported in the
literature65), H2TPP (1 mol %, 0.001 mmol), K2HPO4 (50%
aq), molecular oxygen, and visible light. However, the reaction
did not go on. Subsequently, some inorganic bases and organic
bases, such as Cs2CO3, KOH, Na2CO3, Et3N, DMAP,
DABCO, morpholine, pyridine, and iminazole, were further
demonstrated to have none or poor effect. Fortunately, 3a and
3b were discovered to be effective and gave 2a in yields of 39%
and 61%, respectively, in the presence of H2TPP, O2, and
visible light (Scheme 2). This exciting result spurred us to
explore the nature of this epoxidation.

To improve the epoxidation, a series of derivatives of
amidines were synthesized and applied to the photoepox-
idation of chalcone 1a (Scheme 2). We began our studies by
choosing 1a as the model substrate, using H2TPP as the
photosensitizer, and using LEDs (light emitting diode, white
light, 10 W, 4000 K) to provide light. Low yields (8−19%) of
2a were obtained when 3c, 3j, 3k, 3l, 3m, and 3n were used
instead of 3b. Moreover, no reaction occurred when 3d, 3h, 3i,
and 3o were used. Interestingly, all of those amidines had an
electron-withdrawing group or a conjugated group in the N′
position, such as a benzyl group or a nitro group. Side
reactions occurred when 3e, 3f, and 3g were used, and 2a was

obtained in low yields (15−28%). Therefore, 3b is the best
choice among the amidines listed in Scheme 2.
After a suitable amidine 3b had been identified, further

reaction optimization was explored (Table 1). Among the

different solvents shown in Table 1 (entries 1−5), toluene,
dioxane, and CHCl3 could give yields of 88−93% (Table 1,
entries 1−3). Especially, dioxane gave 2a in a yield of 93%
(Table 1, entry 2). THF gave 2a in a moderate yield of 77%
(Table 1, entry 4). Ethanol proved to be less efficient in a yield
of 36% (Table 1, entry 5). H2TPP is the best photosensitizer
among the photosensitizers shown in Scheme 3. It was evident
to find that extremely low temperature was bad for the reaction
rate through the comparison of the yield in toluene at 10 °C to
that at −15 °C (Table 1, entries 1 and 6, 89% and 30%,
respectively). Further increasing the temperature was not
conducive to improving the yields as expected (Table 1, entries
2, 7−10, 93% (10 °C) > 82% (20 °C) > 64% (30 °C) > 40%
(42 °C)). Reducing the concentration of 3b and 1a to one-half
resulted in a slightly lower yield (Table 1, entry 11, 90%). A
79% yield value could be obtained after 240 h when the ratio of
3b/1a was reduced from 4 to 1 (Table 1, entry 12).
Furthermore, there was no significant improvement to the
yield value by further increasing the ratio of 3b/1a from 4 to 8
(Table 1, entry 13). The yield decreased clearly from 93% to
80% when the reaction time was shortened to 48 h (Table 1,
entry 14). 2a could be obtained in a yield of 77% by using air
oxygen as the oxidant (Table 1, entry 15). Furthermore, 2a was
obtained in a yield of 91% for the scale-up experiment when
amplified to the gram scale with 1.05 g of 1a (5 mmol), 15
mmol of 3b, and 0.01 mmol of TPP in dioxane (4 mL) (Table
1, entry 16).
With the optimal reaction conditions in hand (Table 1, entry

2), the substrate scope of the aerobic epoxidation mediated by

Scheme 2. Amidines Screening for the Photoepoxidation of
Chalconea

aReaction conditions: 1a (83.32 mg, 0.4 mmol), amidine (1.2 mmol),
H2TPP (1.5 mg, 0.0025 mmol), toluene (2 mL), oxygen balloon,
white LEDs (10 W), 72 h, 10 °C. bYields of isolated product. cNR, no
reaction. dTurnover number (TON) = moles of the oxidation
product/moles of H2TPP.

Table 1. Optimization for the Photoepoxidation of
Chalconea

entry
1a

(mmol)
3b

(mmol) solvent T (°C)
time
(h)

yieldb

(%) TONc

1 0.4 1.6 toluene 10 96 89 142
2 0.4 1.6 dioxane 10 96 93 149
3 0.4 1.6 CHCl3 10 96 88 146
4 0.4 1.6 THF 10 96 77 123
5 0.4 1.6 ethanol 10 96 36 58
6 0.4 1.6 toluene −15 96 30 64
7 0.4 1.6 dioxane 42 96 40 102
8 0.4 1.6 dioxane 30 96 64 131
9 0.4 1.6 dioxane 20 96 82 141
10 0.4 1.6 dioxane 4 96 88 128
11 0.2 0.8 dioxane 10 96 90 63
12 0.4 0.4 dioxane 10 240 79 149
13 0.4 3.2 dioxane 10 96 93 123
14 0.4 1.6 dioxane 10 48 80 144
15d 0.4 1.6 dioxane 10 96 77 146
16e 5 15 dioxane 10 96 91 455

aReaction conditions: H2TPP (1.5 mg, 0.0025 mmol), solvent (2
mL), oxygen balloon, white LEDs (10 W). bYields of isolated
product. cTON = moles of the oxidation product/moles of H2TPP.
dIn air. eH2TPP (6.0 mg, 0.01 mmol), dioxane (4 mL).
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3b was explored (Scheme 4). Satisfactorily, most of the
chalcone derivatives bearing a halogen or alkyl group exhibited
excellent yields (2a−2l and 2o, 86−94%) except for 1m and
1n bearing the OMe group (2m and 2n, yields of 77% and
60%, respectively). 2p bearing the CF3 group was obtained in a
yield of 88%. 2q was also obtained in a yield of 48%. It is worth
mentioning that the reaction also proceeded for cyclohexenone
1r and 2-cycloheptenone 1s (crude yields of 40% and 80%,
respectively). Unfortunately, it is not suited for N-isopropyl-
cinnamamide 1t and ethyl cinnamate 1u.
In contrast to conventional batch processing, microreactor

technology exhibits salient advantages for its large specific
surface area, enhanced heat- and mass-transfer rates, reduced
safety hazards, and high degree of control over photochemical
transformations.67,68 To accelerate the reaction, Corning
Advanced Flow Reactors (Lab Reactors, Figure S2) were
used for the reaction investigation (Scheme 5). 2a was
obtained in a yield of 99% (NMR) and an isolated yield of 90%
after a total residence time of 4.6 h. The reaction processed in
microreactors (Figure S5) was clearly faster than that in
reaction tubes (Figure S4).
To investigate the mechanism of this epoxidation, control

experiments without O2, light, H2TPP, and amidines were
conducted (Table 2, entries 1−4). Epoxidation did not
proceed under a N2 atmosphere (Table 2, entry 1). This
result indicates that the origin of incorporated oxygen atom in
the epoxides came from molecular oxygen. The reaction did
not occur in the dark (Table 2, entry 2) or did not proceed
effectively without the photosensitizer (Table 2, entry 3). This
suggests that light was the indispensable driving force for this
epoxidation. Additionally, no product was obtained when using
DMAP instead of 3b (Table 2, entry 4). Therefore,
tetramethylguanidine, O2, H2TPP, and light are imperative.

The reaction was suppressed in the presence of the singlet
oxygen inhibitors 1,4-diazabicyclo[2,2,2] octane69,70

(DABCO) and NaN3
71 (Table 2, entries 5 and 6). Therefore,

singlet oxygen may account for the epoxidation. In addition,
according to the results of Scheme 6(I), 2a can be obtained in
a yield of 32% when the mixture of 3b and H2TPP in dioxane
was preirradiated under an O2 atmosphere for 36 h, and then
moved to the dark conditions and filled with N2. The reaction
was completed by adding the substrate 1a and stirring it under
a N2 atmosphere for another 48 h. In contrast, little product
(Scheme 6(II), <1% yield) was obtained when the mixture of
1a and H2TPP in dioxane was preirradiated under an O2
atmosphere for 36 h, and then moved to the dark conditions,
where the substrate 3b was added, and stirred under an O2
atmosphere for an additional 48 h. Therefore, the key to this
reaction was the change of 3b under light. Furthermore, the
information regarding [3a + O] (M-3), [3b + O] (3b-2), and
[3a + 2O] (M-4) was found in the HRMS spectra (Figures S7
and S8). Additionally, the information regarding H2O2 could
not be found in the 1H NMR spectra after irradiating the

Scheme 3. Photosensitizer Screening for the
Photoepoxidation of Chalconea

aReaction conditions: 1a (83.32 mg, 0.4 mmol), 3b (1.6 mmol),
photosensitizer (0.0025 mmol), dioxane (2 mL), oxygen balloon,
white LEDs (10 W), 96 h, 10 °C. Yields of isolated product. TON =
moles of the oxidation product/moles of the photosensitizer.

Scheme 4. Substrate Scope of the Photoepoxidation
Mediated by 3ba

aReaction conditions: 1 (0.4 mmol), 3b (184 mg, 1.6 mmol), H2TPP
(1.5 mg, 0.0025 mmol), dioxane (2 mL), oxygen balloon, white LEDs
(10 W), 96 h, 10 °C, yields of isolated product; TON = moles of the
oxidation product/moles of H2TPP.

bThe crude yield was determined
by GC−MS.
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mixture of 3b and H2TPP in CDCl3 or DMSO-d6 (Figures S9
and S10).
On the basis of all of the above results, a plausible

mechanism is described as Scheme 7. Under irradiation, the
photosensitizer Psn is excited to its excited state *Psn. Singlet
oxygen (1O2) is produced from the ground state (3O2) through
energy transfer with the excited-state photosensitizer *Psn. 1O2
reacts with amidine A to give amidine peroxide B, which then
oxidized the substrate to yield an epoxy ketone (product) via
the formation of a C−O bond to form transition state C and
the breakage of the O−O bond in C. Amidine oxide D is
generated simultaneously.
In addition, density functional theory (DFT) calculations

(Scheme 8) were carried out to judge whether the epoxidation
could proceed as suggested. Here, the reaction of chalcone
(1a) with singlet oxygen mediated by tetramethylguanidine
(3b) was chosen as the model reaction. First, 1O2 reacts with
tetramethylguanidine (3b) via the transition state TS-1 to give
tetramethylguanidine peroxide (3b-1). This step only needs to
overcome a low energy barrier of 8.2 kcal/mol. Subsequently,
the newly formed 3b-1 reacts with 1a to yield product 2a via
TS-2 featuring C−O bond formation and O−O cleavage.
Tetramethylguanidine oxide 3b-2 is released at the same time.

This step has a free energy barrier of only 15.6 kcal/mol,
suggesting a feasible process. The whole reaction is exergonic

Scheme 5. Photoepoxidation by Flow Synthesisa

aReaction mixture was prepared by dissolving 1a (1.67 g, 8 mmol), 3b
(3.68 g, 32 mmol), and H2TPP (24 mg, 0.04 mmol) in dioxane (total
volume: 20 mL). Reaction mixture, 1.00 mL/min; O2, 10.0 mL/min
(calculated at standard state (298.15 K, 1 atm)); 10 bar. bYield was
determined by 1H NMR analysis. cYield of isolated product.

Table 2. Mechanism Exploration Experimentsa

entry 3b (mmol) additive time (h) yieldb (%)

1c 1.6 none 48 0 (0f)
2d 1.6 none 48 0 (0f)
3e 1.6 none 96 11 (<1%f,g)
4 0 DMAP 1.0 mmol 48 0
5g 1.6 DABCO 1.0 mmol 96 <1%
6 1.6 NaN3 1.0 mmol 96 28

aReaction conditions: 1a (83.32 mg, 0.4 mmol), H2TPP (1.5 mg,
0.0025 mmol), dioxane (2 mL), oxygen balloon, white LEDs (10 W),
10 °C. bYields of isolated product. cReaction under the nitrogen
protection. dReaction in the dark. eWithout photosensitizer. fIn
toluene. gYield was determined by 1H NMR analysis.

Scheme 6. Mechanism Exploration Experimentsa

aReaction conditions: 1a (83.32 mg, 0.4 mmol), 3b (184 mg, 1.6
mmol), H2TPP (1.5 mg, 0.0025 mmol), dioxane (2 mL), oxygen
ballon, white LEDs (10 W), 10 °C, yield of isolated product. bDark
condition: The reaction tube was wrapped with aluminum foil and
then covered with black cloth. cYield was determined by 1H NMR
analysis.

Scheme 7. Proposed Reaction Mechanism

Scheme 8. Calculated Energy Profile for the Epoxidation of
1a Mediated by Tetramethylguanidine (3b)
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by 51.8 kcal/mol. Overall, the reaction could feasibly take
place from the view of DFT calculations.

■ CONCLUSIONS

We reveal an aerobic epoxidation of α,β-unsaturated ketones in
excellent yields of up to 94% driven by visible light in the
presence of tetramethylguanidine (3b), O2, and H2TPP at 10
°C, in which no metallic compounds participated. The reaction
time was shortened from 96 to 4.6 h by flow synthesis.
Tetramethylguanidine, O2, H2TPP, and light are indispensable.
The reaction was suppressed in the presence of the singlet
oxygen inhibitors DABCO and NaN3, which demonstrated the
reaction proceeded through a singlet oxygen process. The
detailed reaction mechanisms involving the formation of
tetramethylguanidine peroxide (3b-1) and oxidation of
chalcone were further computationally investigated to show a
relatively low activation barrier of 15.6 kcal/mol. The method
expands the utility of amidines to the aerobic oxidation.

■ EXPERIMENTAL SECTION
General. Unless otherwise stated, all commercial reagents and

solvents were used without further purification. Analytical TLC was
visualized with UV light at 254 and 365 nm. Thin layer
chromatography analysis was carried out on TLC glass sheets with
silica gel 60 F254. Purification of reaction products was carried out
with chromatography on silica gel 60 (200−300 mesh). Microreactor
type was Corning advanced flow reactors with two lab reactor reaction
modules (internal volume: 2.7 mL, with extra white LEDs light strip
20 W) and a lab photo reaction module (internal volume: 3 mL).
High-resolution mass spectra (HRMS) were taken on liquid
chromatograph/mass spectrometers (Thermo Scientific LTQ Orbi-
trap XL or Agilent G6224A). Gas chromatography mass spectra
(GC−MS) were taken on a gas chromatograph mass spectrometer
(Agilent 5975C). 1H NMR (400 or 500 MHz) spectra and 13C NMR
(126 or 110 MHz) spectra were recorded on a Bruker Avance II 400
or Bruker Avance III 500 spectrometer.
General Procedure To Prepare Substrates 1a−1q. To a stirred

solution of benzaldehyde (2.12 g, 20 mmol) and acetophenone (2.40
g, 20 mmol) in ethanol (50 mL) at room temperature was added
Ba(OH)2 (0.06 g, 0.02 mmol). The reaction was conducted at room
temperature (or refluxed if not reacted at room temperature). After
complete consumption of one of the starting materials as indicated by
TLC (usually within 60 min), we added 20 mL of water, extracted
with CH2Cl2 (20 mL × 3), washed with saturated brine, dried over
anhydrous Na2SO4, filtered, and evaporated under reduced pressure.
The crude product was purified by recrystallization (or by silica-gel
column chromatography).
(E)-Chalcone (1a).72 Purification by recrystallization (petroleum

ether/ethyl acetate = 20:1, v/v) afforded 1a as a light yellow solid
(3.77g, 90.7% yield), mp 57−58 °C. 1H NMR (500 MHz,
chloroform-d): δ 8.05−7.99 (m, 2H), 7.81 (d, J = 15.7 Hz, 1H),
7.64 (m, J = 6.6, 2.9 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.56−7.47 (m,
3H), 7.42 (m, J = 5.0, 1.9 Hz, 3H). 13C NMR (101 MHz, chloroform-
d): δ 190.6, 144.9, 138.3, 135.0, 132.9, 130.6, 129.0, 128.7, 128.6,
128.5, 122.2. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C15H13O,
209.0961; found, 209.0958.
(E)-3-(2-Chlorophenyl)-1-phenylprop-2-en-1-one (1b).73 Purifica-

tion by recrystallization (petroleum ether/ethyl acetate = 20:1, v/v)
afforded 1b as a light yellow solid (4.18 g, 86.1% yield), mp 50−52
°C. 1H NMR (400 MHz, chloroform-d): δ 8.18 (d, J = 15.6 Hz, 1H),
8.09−7.91 (m, 2H), 7.80−7.68 (m, 1H), 7.64−7.54 (m, 1H), 7.54−
7.39 (m, 4H), 7.38−7.27 (m, 2H). 13C NMR (101 MHz, chloroform-
d): δ 190.4, 140.6, 138.0, 135.5, 133.3, 133.0, 131.2, 130.3, 128.7 (d, J
= 5.6 Hz), 127.8, 127.2, 124.8.
(E)-3-(3-Chlorophenyl)-1-phenylprop-2-en-1-one (1c).74 Purifica-

tion by recrystallization (petroleum ether/ethyl acetate = 20:1, v/v)
afforded 1c as a light yellow solid (3.01 g, 62.0% yield), mp 75−77

°C. 1H NMR (400 MHz, chloroform-d): δ 8.02 (d, J = 7.5 Hz, 2H),
7.74 (d, J = 15.7 Hz, 1H), 7.68−7.57 (m, 2H), 7.57−7.45 (m, 4H),
7.42−7.31 (m, 2H). 13C NMR (101 MHz, chloroform-d): δ 190.1,
143.1, 138.0, 136.8, 135.1, 133.1, 130.3 (d, J = 8.9 Hz), 128.7 (d, J =
16.1 Hz), 128.0, 126.9, 123.3.

(E)-3-(4-Chlorophenyl)-1-phenylprop-2-en-1-one (1d).72 Purifica-
tion by column separation (petroleum ether/ethyl acetate = 20:1, v/
v) afforded 1d as a light yellow solid (4.60 g, 94.8% yield), mp 56−58
°C. 1H NMR (400 MHz, chloroform-d): δ 8.05 (m, J = 8.5, 4.4 Hz,
2H), 7.95−7.77 (m, 1H), 7.75−7.38 (m, 8H). 13C NMR (101 MHz,
chloroform-d): δ 190.5, 144.8, 138.2, 134.9, 132.8, 130.6, 129.0 (d, J
= 2.5 Hz), 128.7 (d, J = 2.5 Hz), 128.7−128.3 (m), 122.1.

(E)-3-(3-Methoxyphenyl)-1-phenylprop-2-en-1-one (1e).73 Purifi-
cation by column separation (petroleum ether/ethyl acetate = 20:1,
v/v) afforded 1e as a light yellow solid (3.89 g, 94.8% yield), mp 58−
59 °C. 1H NMR (400 MHz, chloroform-d): δ 8.02 (m J = 7.4, 1.9, 1.0
Hz, 2H), 7.77 (d, J = 15.7 Hz, 1H), 7.65−7.56 (m, 1H), 7.55−7.46
(m, 3H), 7.38−7.30 (m, 1H), 7.26 (m, J = 1.9, 1.1 Hz, 1H), 7.16 (m,
J = 2.9, 1.4 Hz, 1H), 7.04−6.91 (m, 1H), 3.86 (d, J = 0.8 Hz, 3H).
13C NMR (101 MHz, chloroform-d): δ 190.5, 156.0, 144.7, 138.2,
136.3, 132.8, 130.0, 128.6 (d, J = 11.7 Hz), 122.4, 121.1, 116.3, 113.5,
55.3.

(E)-1-Phenyl-3-(p-tolyl)prop-2-en-1-one (1f).75 Purification by
column separation (petroleum ether/ethyl acetate = 20:1, v/v)
afforded 1f as a light yellow solid (2,73 g, 61.4% yield), mp 96−97 °C.
1H NMR (400 MHz, chloroform-d): δ 8.10−7.92 (m, 2H), 7.78 (d, J
= 15.7 Hz, 1H), 7.52 (m, J = 15.5, 10.5, 3.2 Hz, 6H), 7.22 (t, J = 7.3
Hz, 2H), 2.38 (s, 3H). 13C NMR (101 MHz, chloroform-d): δ 190.7,
145.0, 141.2, 138.5, 132.8, 132.3, 129.8, 128.7, 128.6 (d, J = 2.0 Hz),
121.2, 21.6.

(E)-1-(2-Chlorophenyl)-3-phenylprop-2-en-1-one (1g).72 Purifica-
tion by column separation (petroleum ether/ethyl acetate = 20:1, v/
v) afforded 1g as a light yellow oil (4.46 g, 91.8% yield). 1H NMR
(400 MHz, chloroform-d): δ 7.62−7.51 (m, 2H), 7.50−7.32 (m, 8H),
7.12 (m, J = 16.1, 2.4 Hz, 1H). 13C NMR (101 MHz, chloroform-d):
δ 193.8, 146.3, 139.1, 134.4, 131.5, 130.9, 130.3, 129.4, 129.0, 128.6,
126.9, 126.3.

(E)-1-(3-Chlorophenyl)-3-phenylprop-2-en-1-one (1h).76 Purifica-
tion by recrystallization (petroleum ether/ethyl acetate = 20:1, v/v)
afforded 1h as a light yellow solid (4.31 g, 88.8% yield), mp 97−98
°C. 1H NMR (400 MHz, chloroform-d): δ 7.99 (d, J = 1.9 Hz, 1H),
7.90 (m, J = 7.8, 1.4 Hz, 1H), 7.83 (d, J = 15.7 Hz, 1H), 7.66 (m, J =
6.7, 3.1 Hz, 2H), 7.59−7.53 (m, 1H), 7.51−7.39 (m, 5H). 13C NMR
(101 MHz, chloroform-d): δ 188.9, 145.6, 139.8, 134.9, 134.6, 132.7,
130.8, 130.0 (d, J = 2.1 Hz), 129.0, 128.6 (d, J = 2.7 Hz), 126.6,
121.4.

(E)-1-(4-Chlorophenyl)-3-phenylprop-2-en-1-one (1i).72 Purifica-
tion by recrystallization (petroleum ether/ethyl acetate = 20:1, v/v)
afforded 1i as a light yellow solid (4.00 g, 82.4% yield), mp 101−103
°C. 1H NMR (400 MHz, chloroform-d): δ 8.00 (d, J = 8.2 Hz, 2H),
7.85 (d, J = 15.7 Hz, 1H), 7.67 (m, J = 6.4, 3.0 Hz, 2H), 7.58−7.47
(m, 3H), 7.49−7.42 (m, 3H). 13C NMR (101 MHz, chloroform-d): δ
189.2, 145.4, 139.3, 136.6, 134.8, 130.8, 130.0 (d, J = 3.7 Hz), 129.1
(dd, J = 7.1, 3.4 Hz), 128.6 (d, J = 3.4 Hz), 121.60.

(E)-3-Phenyl-1-(o-tolyl)prop-2-en-1-one (1j).77 Purification by
column separation (petroleum ether/ethyl acetate = 20:1, v/v)
afforded 1j as a light yellow oil (4.10 g, 92.3% yield). 1H NMR (400
MHz, chloroform-d): δ 7.60−7.53 (m, 2H), 7.53−7.47 (m, 1H),
7.46−7.35 (m, 5H), 7.33−7.24 (m, 2H), 7.14 (d, J = 16.1 Hz, 1H),
2.45 (s, 3H). 13C NMR (101 MHz, chloroform-d): δ 196.6, 145.9,
139.2, 137.0, 134.7, 131.4, 130.7, 130.5, 129.0, 128.5, 128.2, 126.8,
125.6, 20.3.

(E)-3-Phenyl-1-(m-tolyl)prop-2-en-1-one (1k).77 Purification by
recrystallization (petroleum ether/ethyl acetate = 20:1, v/v) afforded
1k as a light yellow solid (3.51 g, 78.9% yield), mp 62−64 °C. 1H
NMR (400 MHz, chloroform-d): δ 7.88−7.75 (m, 3H), 7.65 (m, J =
6.6, 2.9 Hz, 2H), 7.53 (d, J = 15.7 Hz, 1H), 7.41 (m, J = 8.5, 4.9, 2.8
Hz, 5H), 2.45 (s, 3H). 13C NMR (101 MHz, chloroform-d): δ 190.7,
144.7, 138.5, 138.3, 135.0, 133.7, 130.6, 129.1, 129.0, 128.6, 128.5,
125.8, 122.3, 21.5.
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(E)-3-Phenyl-1-(p-tolyl)prop-2-en-1-one (1l).72 Purification by
recrystallization (petroleum ether/ethyl acetate = 20:1, v/v) afforded
1l as a light yellow solid (2.97 g, 66.8% yield), mp 56−58 °C. 1H
NMR (400 MHz, chloroform-d): δ 8.04−7.89 (m, 2H), 7.81 (d, J =
15.7 Hz, 1H), 7.64 (m, J = 6.6, 3.0 Hz, 2H), 7.54 (d, J = 15.7 Hz,
1H), 7.41 (m, J = 5.0, 2.0 Hz, 3H), 7.30 (d, J = 7.8 Hz, 2H), 2.44 (s,
3H). 13C NMR (101 MHz, chloroform-d): δ 189.9, 144.3, 143.6,
135.6, 135.0, 130.4, 129.3, 128.9, 128.7, 128.4, 122.1, 21.7.
(E)-1-(3-Methoxyphenyl)-3-phenylprop-2-en-1-one (1m).78 Puri-

fication by column separation (petroleum ether/ethyl acetate = 20:1,
v/v) afforded 1m as a colorless oil (4.33 g, 91.0% yield). 1H NMR
(400 MHz, chloroform-d): δ 7.80 (m, J = 15.6, 2.1 Hz, 1H), 7.61 (m,
J = 15.5, 7.5, 2.6 Hz, 3H), 7.56−7.47 (m, 2H), 7.41 (m, J = 5.7, 2.4
Hz, 4H), 7.12 (m, J = 8.2, 2.7 Hz, 1H), 3.87 (s, J = 3.2 Hz, 3H). 13C
NMR (101 MHz, chloroform-d): δ 190.3, 160.0, 144.9, 139.7, 135.0,
130.6, 129.7, 129.0, 128.5, 122.2, 121.1, 119.4, 113.0, 55.6.
(E)-1-(4-Methoxyphenyl)-3-phenylprop-2-en-1-one (1n).72 Purifi-

cation by recrystallization (petroleum ether/ethyl acetate = 20:1, v/v)
afforded 1n as a white solid (3.74 g, 78.6% yield), mp 107−109 °C.
1H NMR (400 MHz, chloroform-d): δ 8.05 (m, J = 8.9, 3.9 Hz, 2H),
7.93−7.73 (m, 1H), 7.71−7.53 (m, 3H), 7.48−7.34 (m, 3H), 6.99
(m, J = 9.0, 3.7 Hz, 2H). 13C NMR (101 MHz, chloroform-d): δ
188.8, 163.6, 144.1, 135.2, 131.2, 130.9, 130.4, 129.0, 128.5, 122.0,
114.0, 55.6.
(E)-3-(Naphthalen-2-yl)-1-phenylprop-2-en-1-one (1o).79 Purifi-

cation by recrystallization (petroleum ether/ethyl acetate = 20:1, v/v)
afforded 1o as a yellow solid (4.37 g, 84.7% yield), mp 87−89 °C. 1H
NMR (400 MHz, chloroform-d): δ 8.71 (d, J = 15.4 Hz, 1H), 8.35−
8.22 (m, 1H), 8.18−8.05 (m, 2H), 8.00−7.86 (m, 3H), 7.73−7.47
(m, 7H). 13C NMR (101 MHz, chloroform-d): δ 190.3, 141.8, 138.3,
133.8, 133.0, 132.4, 131.9, 130.9, 128.9, 128.8, 128.7, 127.1, 126.4,
125.5, 125.2, 124.7, 123.6.
(Z)-4,4,4-Trifluoro-1,3-diphenylbut-2-en-1-one (1p). 1p was pre-

pared according to the literature.80 Yellow oil at room temperature,
yellow solid at 0−8 °C (2.29 g, 83% yield), mp 0−4 °C. 1H NMR
(400 MHz, chloroform-d): δ 7.85 (d, J = 7.8 Hz, 1H), 7.63−7.50 (m,
1H), 7.42 (t, J = 7.8 Hz, 1H), 7.37−7.23 (m, 6H). 13C NMR (101
MHz, chloroform-d): δ 192.2, 139.2, 138.9, 136.2, 134.0, 131.0, 129.5,
129.2, 129.0, 128.8, 128.5, 124.4, 121.6.
(E)-Benzylidenepinacolone (1q).81 The reactant of pinacolone is

2.0 equiv. Purification by column separation (petroleum ether/ethyl
acetate = 25:1, v/v) afforded 1q as a light yellow solid (3.78 g, 99%
yield), mp 40−42 °C. 1H NMR (400 MHz, chloroform-d): δ 7.68 (d,
J = 15.6 Hz, 1H), 7.57 (dd, J = 6.7, 2.9 Hz, 2H), 7.38 (m, J = 4.9, 1.9
Hz, 3H), 7.13 (d, J = 15.6 Hz, 1H), 1.23 (s, 9H). 13C NMR (101
MHz, chloroform-d): δ 204.3, 143.0, 135.1, 130.3, 129.0, 128.4, 120.9,
43.4, 26.5.
N-Isopropylcinnamamide (1t).82 White solid, mp 39−41 °C. 1H

NMR (400 MHz, chloroform-d): δ 7.62 (d, J = 15.6 Hz, 1H), 7.53−
7.44 (m, 2H), 7.33 (m, J = 5.1, 2.2 Hz, 3H), 6.40 (m, J = 15.6, 8.7, 2.5
Hz, 1H), 5.74 (d, J = 57.3 Hz, 1H), 4.23 (m, J = 8.0, 6.5 Hz, 1H),
1.22 (d, J = 6.5 Hz, 6H). 13C NMR (101 MHz, chloroform-d): δ
165.2, 140.8, 140.8, 135.1, 129.7, 129.6, 128.9, 127.8, 121.3, 121.2,
41.7, 23.0, 22.9.
Ethyl Cinnamate (1u).83 Light yellow oil. 1H NMR (400 MHz,

chloroform-d): δ 7.69 (d, J = 16.0 Hz, 1H), 7.51 (m, J = 6.1, 3.5 Hz,
2H), 7.44−7.29 (m, 3H), 6.44 (d, J = 16.0 Hz, 1H), 4.26 (q, J = 7.1
Hz, 2H), 1.34 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, chloroform-
d): δ 167.1, 144.7, 134.6, 130.3, 129.0, 128.2, 118.4, 60.6, 14.5.
General Procedure To Prepare Products 2a−2q. 3b (200 ul, 1.6

mmol) was added to the mixture solution of 1a (83.32 mg, 0.4 mmol)
and H2TPP (1.5 mg, 0.0025 mmol) in dioxane (2 mL) in a Schlenk
tube equipped with a stir bar and oxygen balloon. The mixture was
irradiated by white light (LEDs light strip, 10 W/m, 10 W, 4000 K)
and stirred under an O2 atmosphere at 10 °C for 96 h. It was then
purified by chromatography (silica gel, PE/CH2Cl2/EtOAc = 25:1:1)
to afford the product.
Phenyl(3-phenyloxiran-2-yl)methanone (2a).84 White solid

(83.20 mg, 93% yield), mp 87−88 °C. 1H NMR (400 MHz,
chloroform-d): δ 8.02 (m, J = 5.0, 2.4 Hz, 2H), 7.63 (m, J = 7.7, 2.6

Hz, 1H), 7.51 (m, J = 7.8, 6.4, 3.5 Hz, 2H), 7.40 (q, J = 5.3, 4.6 Hz,
5H), 4.39−4.26 (m, 1H), 4.17−4.03 (m, 1H). 13C NMR (101 MHz,
chloroform-d): δ 193.1, 135.5, 134.0, 129.1, 128.9, 128.8, 128.7,
128.3, 128.2, 125.8, 125.7, 61.0, 59.4. HRMS (ESI-TOF) m/z: [M +
H]+ calcd for C15H13O2, 225.0910; found, 225.0910.

(3-(2-Chlorophenyl)oxiran-2-yl)(phenyl)methanone (2b).85 Light
yellow solid (96.81 mg, 90%), mp 71−73 °C. 1H NMR (400 MHz,
chloroform-d): δ 8.17−8.00 (m, 3H), 7.63 (m, J = 7.6, 4.0 Hz, 1H),
7.57−7.47 (m, 2H), 7.40 (m, J = 6.9, 2.8, 2.2 Hz, 2H), 7.37−7.28 (m,
1H), 4.41 (t, J = 2.2 Hz, 1H), 4.19 (t, J = 2.3 Hz, 1H).13C NMR (101
MHz, chloroform-d): δ 192.8, 135.4, 134.1, 133.8, 133.3, 129.8, 129.4,
128.9, 128.4, 127.3, 126.2, 60.1, 57.2.

(3-(3-Chlorophenyl)oxiran-2-yl)(phenyl)methanone (2c).79 Yel-
low solid (92.50 mg, 89% yield), mp 59−61 °C. 1H NMR (400 MHz,
chloroform-d): δ 8.19−8.07 (m, 2H), 7.81−7.70 (m, 1H), 7.61 (t, J =
7.8 Hz, 2H), 7.54−7.42 (m, 3H), 7.38 (m, J = 4.8, 2.1 Hz, 1H), 4.39
(t, J = 2.7 Hz, 1H), 4.17 (d, J = 1.9 Hz, 1H). 13C NMR (101 MHz,
chloroform-d): δ 192.6, 137.7, 135.4, 134.9, 134.2, 130.1, 129.2,
129.0, 128.4, 125.8, 124.2, 60.8, 58.5.

(3-(4-Chlorophenyl)oxiran-2-yl)(phenyl)methanone (2d).85 Light
yellow solid (95.27 mg, 92% yield), mp 87−89 °C. 1H NMR (400
MHz, chloroform-d): δ 8.02 (d, J = 8.2 Hz, 2H), 7.70−7.58 (m, 1H),
7.58−7.47 (m, 2H), 7.45−7.28 (m, 4H), 4.32 (d, J = 2.2 Hz, 1H),
4.09 (d, J = 2.1 Hz, 1H). 13C NMR (101 MHz, chloroform-d): δ
193.1, 135.5, 134.0, 129.1, 128.9, 128.8, 128.4, 127.2, 125.8, 61.0,
59.4.

(3-(3-Methoxyphenyl)oxiran-2-yl)(phenyl)methanone (2e).86

Light yellow solid (89.80 mg, 88% yield), mp 75−77 °C. 1H NMR
(400 MHz, chloroform-d): δ 8.00 (d, J = 8.1 Hz, 2H), 7.77−7.20 (m,
4H), 6.94 (m, J = 22.5, 7.0 Hz, 3H), 4.30 (s, 1H), 4.05 (s, 1H), 3.81
(s, 3H). 13C NMR (101 MHz, chloroform-d): δ 193.0, 160.1, 137.2,
135.4, 134.0, 129.9, 128.9, 128.3, 118.2, 114.7, 110.9, 60.9, 59.3, 55.3.

Phenyl(3-(p-tolyl)oxiran-2-yl)methanone (2f).79 White solid
(88.38 mg, 94% yield), mp 82−84 °C. 1H NMR (400 MHz,
chloroform-d): δ 8.15−7.98 (m, 2H), 7.71−7.58 (m, 1H), 7.58−7.45
(m, 2H), 7.37−7.17 (m, 4H), 4.32 (t, J = 1.9 Hz, 1H), 4.06 (d, J = 2.0
Hz, 1H), 2.40 (d, J = 4.4 Hz, 3H). 13C NMR (101 MHz, chloroform-
d): δ 193.2, 139.0, 135.5, 134.0, 132.5, 129.5, 128.9, 128.3, 125.8,
61.0, 59.5, 21.3.

(2-Chlorophenyl)(3-phenyloxiran-2-yl)methanone (2g).86,87

Light yellow solid (95.48 mg, 89% yield), mp 69−71 °C. 1H NMR
(400 MHz, chloroform-d): δ 7.71−7.59 (m, 1H), 7.52−7.29 (m, 8H),
4.17 (d, J = 1.9 Hz, 1H), 4.11 (d, J = 1.9 Hz, 1H). 13C NMR (101
MHz, chloroform-d): δ 196.2, 136.5, 135.2, 133.0, 132.1, 130.4, 130.1,
129.0, 128.7, 127.2, 125.8, 62.9, 60.4.

(3-Chlorophenyl)(3-phenyloxiran-2-yl)methanone (2h).88 Yellow
oil (102.72 mg, 88% yield). 1H NMR (400 MHz, chloroform-d): δ
8.01 (d, J = 2.1 Hz, 1H), 7.91 (d, J = 7.9 Hz, 1H), 7.60 (d, J = 7.8 Hz,
1H), 7.55−7.31 (m, 6H), 4.26 (d, J = 2.2 Hz, 1H), 4.10 (d, J = 2.1
Hz, 1H). 13C NMR (101 MHz, chloroform-d): δ 192.1, 136.9, 135.3,
135.2, 133.9, 130.3, 129.2, 128.9, 128.4, 126.6, 125.9, 61.0, 59.6.

(4-Chlorophenyl)(3-phenyloxiran-2-yl)methanone (2i).85 Light
yellow solid (88.67 mg, 86% yield), mp 121−124 °C. 1H NMR
(400 MHz, chloroform-d): δ 7.94 (d, J = 8.3 Hz, 2H), 7.50−7.31 (m,
7H), 4.23 (d, J = 1.8 Hz, 1H), 4.06 (d, J = 1.8 Hz, 1H). 13C NMR
(101 MHz, chloroform-d): δ 192.1, 140.6, 135.3, 133.7, 129.8, 129.2,
129.2, 128.8, 125.8, 61.1, 59.4.

(3-Phenyloxiran-2-yl)(o-tolyl)methanone (2j).86 Yellow oil (84.74
mg, 93% yield). 1H NMR (400 MHz, chloroform-d): δ 7.71 (t, J = 8.1
Hz, 1H), 7.62−7.05 (m, 8H), 4.10 (m, J = 29.7, 7.8 Hz, 1H), 2.57 (d,
J = 8.3 Hz, 1H). 13C NMR (101 MHz, chloroform-d): δ 196.5, 138.8,
135.5, 135.4, 132.3, 132.0, 129.0, 129.0, 128.8, 125.8, 62.4, 59.5, 21.0.

(3-Phenyloxiran-2-yl)(m-tolyl)methanone (2k).88 Light yellow
solid (81.17 mg, 86% yield), mp 58−59 °C. 1H NMR (400 MHz,
chloroform-d): δ 7.90−7.77 (m, 2H), 7.42 (m, J = 10.5, 9.8, 4.7 Hz,
7H), 4.32 (t, J = 2.3 Hz, 1H), 4.09 (d, J = 2.0 Hz, 1H), 2.42 (s, 2H).
13C NMR (101 MHz, chloroform-d): δ 193.2, 138.8, 135.6 (d, J = 4.5
Hz), 134.8, 129.1, 128.8 (d, J = 2.2 Hz), 125.8, 125.6, 60.9, 59.4, 21.4.

(3-Phenyloxiran-2-yl)(p-tolyl)methanone (2l).85 Light yellow
solid (89.76 mg, 92% yield), mp 86−87 °C. 1H NMR (400 MHz,
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chloroform-d): δ 7.93 (d, J = 7.8 Hz, 2H), 7.40 (p, J = 7.3, 6.1 Hz,
5H), 7.29 (d, J = 7.8 Hz, 2H), 4.30 (d, J = 1.9 Hz, 1H), 4.14−4.03
(m, 1H), 2.44 (d, J = 4.9 Hz, 3H). 13C NMR (101 MHz, chloroform-
d): δ 192.6, 145.1, 135.6, 133.0, 129.6, 129.0, 128.8, 128.5, 125.8,
60.9, 59.3, 21.8.
(3-Methoxyphenyl)(3-phenyloxiran-2-yl)methanone (2m).88 Yel-

low oil (85.76 mg, 77% yield). 1H NMR (400 MHz, chloroform-d): δ
7.71−7.50 (m, 2H), 7.50−7.29 (m, 6H), 7.27−7.06 (m, 1H), 4.30 (s,
1H), 4.18−4.00 (m, 1H), 3.86 (m, J = 15.9, 7.1 Hz, 3H). 13C NMR
(101 MHz, chloroform-d): δ 192.9, 160.0, 136.8, 135.5, 129.9, 129.1,
128.8, 125.8, 121.0, 120.5, 112.5, 61.0, 59.4, 55.5.
(4-Methoxyphenyl)(3-phenyloxiran-2-yl)methanone (2n).79 Yel-

low oil (61.70 mg, 60% yield). 1H NMR (400 MHz, chloroform-d): δ
8.07−7.79 (m, 2H), 7.47−7.27 (m, 5H), 6.93 (d, J = 8.9 Hz, 2H),
4.25 (d, J = 1.9 Hz, 1H), 4.06 (d, J = 1.9 Hz, 1H), 3.85 (s, 3H). 13C
NMR (101 MHz, chloroform-d): δ 191.4, 164.3, 135.7, 130.8, 129.0,
128.8, 128.6, 125.8, 114.1, 60.9, 59.2, 55.6.
(3-(Naphthalen-2-yl)oxiran-2-yl)(phenyl)methanone (2o).79

White solid (96.81 mg, 87% yield), mp 113−115 °C. 1H NMR
(400 MHz, chloroform-d): δ 8.12−8.04 (m, 2H), 8.00 (m, J = 7.4, 1.9
Hz, 1H), 7.96−7.84 (m, 2H), 7.70−7.59 (m, 2H), 7.57−7.44 (m,
5H), 4.73 (d, J = 1.9 Hz, 1H), 4.31 (d, J = 2.0 Hz, 1H). 13C NMR
(101 MHz, chloroform-d): δ 193.4, 135.6, 134.2, 133.4, 131.8, 131.3,
129.1, 129.0, 128.6, 126.9, 126.3, 125.6, 122.7, 122.6, 60.3, 58.0.
Phenyl(3-phenyl-3-(trifluoromethyl)oxiran-2-yl)methanone

(2p).89 White solid (104.86 mg, 88% yield), mp 81−82 °C. 1H NMR
(400 MHz, chloroform-d): δ 7.83−7.78 (m, 2H), 7.54 (t, J = 7.5 Hz,
1H), 7.40 (t, J = 7.7 Hz, 2H), 7.37−7.30 (m, 2H), 7.21 (m, J = 14.5,
8.4, 6.2 Hz, 3H), 4.71 (s, 1H). 13C NMR (101 MHz, chloroform-d): δ
189.5, 135.0, 134.4, 130.0, 129.0, 128.5, 128.3, 128.2, 126.9, 124.1,
121.4, 63.0, 62.7, 60.2.
2,2-Dimethyl-1-(3-phenyloxiran-2-yl)propan-1-one (2q).90 Col-

orless oil (39.24 mg, 48% yield). 1H NMR (400 MHz, chloroform-d):
δ 7.48−7.34 (m, 3H), 7.33−7.28 (m, 2H),3.86 (s, 2H), 1.23 (s, 9H).
13C NMR (101 MHz, chloroform-d): δ 208.2, 135.7, 129.0, 128.8,
125.7, 59.4, 59.2, 43.7, 25.8.
Procedure To Investigate the Reaction of 1r and 1s. 3b (1.6

mmol) was added to the mixture solution of 1r (38.45 g, 0.4 mmol)
and H2TPP (1.5 mg, 0.0025 mmol) in dioxane (2 mL) in a Schlenk
tube equipped with a stir bar and O2 balloon. The mixture was
irradiated with white light (LEDs, 10 W, 4000 K) and stirred under an
O2 atmosphere at 10 °C for 96 h. We added 20 mL of CH2Cl2 to the
reaction mixture, washed with HCl aqueous solution (1 mmol/mL)
and brine, and dried over anhydrous Na2SO4. The mixture solution
was filtered before injecting into the gas chromatograph mass
spectrometer (Agilent 5975C). The crude yield was determined by
GC−MS adopting the area normalization method. 1r: MS calcd for
C6H8O, 96.1; found, 96.0. 2r: MS calcd for C6H8O2, 112.1; found,
112.0. 1s: MS calcd for C7H10O, 110.1; found, 110.1. 2r: MS calcd for
C7H10O2, 126.1; found, 126.0.
Procedure To Prepare Amidines 3c−3o.91 Vilsmeyer salt

tetramethylchloroformamidinium hexafluorophosphate (3.36 g, 12
mmol) in MeCN (20 mL) was slowly added to a mixture solution of
amine (isopropylamine, 0.80 g, 12 mmol) and Et3N (2.4 g, 24 mmol)
in MeCN (20 mL) under cooling in an ice bath and a N2 atmosphere.
After 30 min, the mixture was refluxed for 3 h. Next, 2 equiv of NaOH
dissolved in a minimum amount of water was added under vigorous
stirring to deprotonate. The mixture was extracted with CH2Cl2 and
dried over MgSO4. After removal of the solvent as well as excess Et3N,
the residue was distilled under reduced pressure to afford the final
product.
2-Isopropyl-1,1,3,3-tetramethylguanidine (3c).92 Light yellow oil

(1.16 g, 73.8% yield). 1H NMR (400 MHz, chloroform-d): δ 3.58 (m,
J = 6.4 Hz, 1H), 2.97 (s, 12H), 1.27 (d, J = 6.4 Hz, 6H). 13C NMR
(101 MHz, chloroform-d): δ 161.0, 77.4, 47.9, 39.9, 23.2. HRMS
(ESI-TOF) m/z: [M + H]+ calcd for C8H20N3, 158.1652; found,
158.1652.
1,1,3,3-Tetramethyl-2-phenylguanidine (3d).93 Yellow oil (1.64 g,

85.7% yield). 1H NMR (400 MHz, chloroform-d): δ 7.12 (t, J = 7.7
Hz, 2H), 6.76 (t, J = 7.3 Hz, 1H), 6.64 (d, J = 7.8 Hz, 2H), 2.61 (s,

12H). 13C NMR (101 MHz, DMSO-d6): δ 158.3, 151.9, 128.4, 121.2,
119.1, 39.3.

Procedure To Prepare Amidines 3e−3f. A solution of S-
methylisothiourea sulfate (5.53 g, 20 mmol) in water (30 mL) was
cooled with an ice bath. Amine (100 mmol) was added dropwise with
stirring. We stirred the mixture at room temperature for 16 h and then
refluxed for 4−5 h. The solution was evaporated under reduced
pressure, and the residue was crystallized from 95% EtOH to give
guanidine sulfate. We dissolved the guanidine sulfate with water (50
mL) and added Ba(OH)2 (6.94 g, 22 mmol). We stirred it for 1 h at
50 °C to deprotonate, added EtOH (50 mL), filtered to remove the
BaSO4, and evaporated under reduced pressure to give the crude
product. We dissolved the crude product to CH2Cl2 and removed the
impurity by filtering. The filtrate was evaporated under reduced
pressure, and dried in vacuo to afford the final product.

1-Methylguanidine (3e).94 Light yellow waxy solid (2.77 g, 94.8%
yield). 1H NMR (400 MHz, deuterium oxide): δ 2.69 (s, 3H). 13C
NMR (101 MHz, DMSO-d6): δ 158.7, 28.6. HRMS (ESI-TOF) m/z:
[M + H]+ calcd for C2H8N3, 74.0713; found, 74.0709.

1-Ethylguanidine (3f).95 Light yellow oil (3.21 g, 92.0% yield). 1H
NMR (400 MHz, deuterium oxide): δ 3.08 (q, J = 7.3 Hz, 2H), 1.10
(t, J = 7.3 Hz, 3H). 13C NMR (101 MHz, DMSO-d6): δ 157.8, 36.0,
15.3. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C3H10N3, 88.0869;
found, 88.0879.

1-Isopropylguanidine (3g).96 Yellow oil (3.37 g, 83.3% yield). 1H
NMR (400 MHz, deuterium oxide): δ 3.55 (m, J = 9.9, 6.3, 3.6 Hz,
1H), 1.09 (m, J = 6.2, 2.7 Hz, 6H). 13C NMR (101 MHz, DMSO-d6):
δ 157.2, 42.0, 23.3. HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C4H12N3, 102.1026; found, 102.1024.

Procedure To Prepare Amidines 3h.97 First step: DMC was
prepared according to the literature.98 To a solution of DMI (2.28 g,
20 mmol) in CCl4 (50 mL) was added trichlormethychlorlformate
(1.96 g, 6.6 mmol) at room temperature, which was stirred for 5 h. It
was filtered, washed with CCl4 and n-hexane, and dried to afford
DMC (2.43 g, 72.0% yield). Second step: 3h was prepared according
to the literature.97 A solution of amine (0.93 g, 10 mmol) in CH2Cl2
(10 mL) was slowly added to a solution of DMC (1.69 g, 10 mmol)
and Et3N (2.01g, 20 mmol) in CH2Cl2 (10 mL) at 0−5 °C under a
N2 atmosphere. The mixture then was stirred at room temperature for
5 h, and the solvent was evaporated. The residue was dissolved in
H2O (4 mL), basified with aqueous NaOH (20%) to pH = 12, and
extracted with toluene (5 × 30 mL). The combined organic layers was
washed with H2O (10 × 5 mL) and brine (5 × 10 mL), dried over
MgSO4, filtered, evaporated under reduced pressure, and dried in
vacuo to give 1,3-dimethyl-2-phenylimino-1,3-diazolidine (3h) as a
yellow oil (0.98 g, 52.3% yield). 1H NMR (400 MHz, chloroform-d):
δ 7.10 (t, J = 7.8 Hz, 2H), 6.79 (m, J = 24.6, 7.6 Hz, 3H), 3.17 (d, J =
3.0 Hz, 4H), 2.55 (d, J = 3.2 Hz, 6H). 13C NMR (101 MHz, DMSO-
d6): δ 154.8, 150.2, 128.3, 122.0, 119.4, 48.0, 34.8.

2-(Nitroimino)imidazolidine99 (3i). White solid, mp 215−217 °C.
1H NMR (400 MHz, DMSO-d6): δ 8.40 (s, 2H), 3.57 (s, 4H). 13C
NMR (101 MHz, DMSO-d6): δ 163.2, 42.0. HRMS (ESI-TOF) m/z:
[M + H]+ calcd for C3H7N4O2, 131.0564; found, 131.0565.

Procedure To Prepare Amidines 3j−3k.100 A stirred mixture of
carbodiimide (N,N-diisopropylcarbodiimide, 2.52 g, 20 mmol) and
NH4Cl (2.14 g, 40 mmol) in dry acetonitrile (10 mL) was heated
under reflux for 24 h. We then cooled the mixture (0 °C) and
obtained the colorless crystals (guanidinium chloride) by filtering.
The crystals were suspended in dichloromethane (50 mL) and
basified with aqueous NaOH (40%, 30 mL). The aqueous layer was
extracted with dichloromethane (3 × 50 mL). The combined organic
layer was dried over powder KOH, filtered, evaporated under reduced
pressure, and dried in vacuo to give the product.

(E)-1,2-Diisopropylguanidine (3j).100 White solid (1.718 g, yield
60.0%), mp 62−64 °C. 1H NMR (400 MHz, chloroform-d): δ 3.64
(p, J = 6.3 Hz, 2H), 1.14 (d, J = 6.4 Hz, 12H). 13C NMR (101 MHz,
chloroform-d): δ 157.0, 77.4, 43.0, 23.4. HRMS (ESI-TOF) m/z: [M
+ H]+ calcd for C7H18N3, 144.1495; found, 144.1495.

(E)-1,2-Di-tert-butylguanidine (3k).100 White solid (1.64 g, yield
47.8%), mp 136−138 °C. 1H NMR (400 MHz, chloroform-d): δ 1.31
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(s, 24H). 13C NMR (101 MHz, chloroform-d): δ 157.8, 77.4, 50.2,
30.0. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C9H22N3,
172.1808; found, 172.1807.
Preparation of 3l.100 A stirred solution of N,N-diisopropylcarbo-

diimide (2.52 g, 20 mol) and isopropylammonium chloride (2.39 g,
25 mmol) in ethanol (10 mL) was heated under reflux for 24 h,
followed by distillation of the solvent in vacuo. The residue was
dissolved in water and the solution made basic with aq NaOH (20%).
It was extracted with dichloromethane, dried of the combined organic
layers with K2CO3, filtered, evaporated under reduced pressure, and
dried in vacuo to give the product.
1,2,3-Triisopropylguanidine (3l). White solid (2.33 g, 63% yield),

mp 57−59 °C. 1H NMR (400 MHz, chloroform-d): δ 3.62−3.25 (m,
3H), 1.08 (m, J = 6.4, 1.8 Hz, 18H). 13C NMR (101 MHz,
chloroform-d): δ 150.2, 44.5, 23.9. HRMS (ESI-TOF) m/z: [M +
H]+ calcd for C10H24N3, 186.1965; found, 186.1962.
Procedure To Prepare Amidines 3m−3o.101 A mixture of amine

(isopropylamine, 1.18 g, 20 mmol) and DMF dimethyl acetal (3.57 g,
30 mmol) in methanol (30 mL) was heated to 70 °C with stirring
under a N2 atmosphere for 3 h or until completion as indicated by
TLC. The mixture was cooled to room temperature, and the product
was isolated via evaporation to dryness to give the crude product
3m−3o. It was purified by distillation or column separation to obtain
the product.
(E)-N′-Isopropyl-N,N-dimethylformimidamide (3m).102 Colorless

transparent liquid (reduced pressure distillation, 1.48 g, 64.9% yield).
1H NMR (400 MHz, DMSO-d6): δ 7.35 (s, 1H), 3.23 (p, J = 6.3 Hz,
1H), 2.71 (s, 6H), 1.00 (d, J = 6.3 Hz, 6H). 13C NMR (101 MHz,
DMSO-d6): δ 152.6, 55.1, 36.5, 25.9.
(E)-N′-tert-Butyl-N,N-dimethylformimidamide (3n).103 Colorless

transparent liquid (reduced pressure distillation, 1.86 g, 72.4% yield).
1H NMR (400 MHz, chloroform-d): δ 7.32 (s, 1H), 2.83 (s, 6H),
1.18 (s, 9H). 13C NMR (101 MHz, DMSO-d6): δ 150.3, 52.3, 36.3,
31.3.
(E)-N,N-Dimethyl-N′-phenylformimidamide (3o).104 Purification

by column separation (CH2Cl2/MeOH = 20/1, v/v), light yellow oil
(2.76 g, 93.2% yield). 1H NMR (400 MHz, chloroform-d): δ 5.52(s,
1H), 7.30−7.23 (m, 2H), 7.01 (m, J = 7.3, 1.1 Hz, 1H), 6.98−6.94
(m, 2H), 3.02 (s, 6H). 13C NMR (101 MHz, DMSO-d6): δ 153.4,
152.0, 128.7, 121.5, 120.8, 33.9.
Characterization for Photosensitizers. 10-Methyl-9-phenyl-

acridin-10-ium Perchlorate (Mes-Acr+).105 1H NMR (400 MHz,
chloroform-d): δ 8.81 (m, J = 9.3, 2.0 Hz, 2H), 8.41 (m, J = 8.8, 6.6,
1.8 Hz, 2H), 7.85 (m, J = 8.7, 1.8 Hz, 2H), 7.83−7.74 (m, 2H), 7.16
(s, 2H), 5.11 (d, J = 2.0 Hz, 3H), 2.48 (d, J = 2.0 Hz, 3H), 1.73 (d, J =
2.0 Hz, 6H).
3,3′,5,5′-Tetraphenyl-ms-aza-2,2′-dipyrrolylmethene Difluoro-

borate (Aza-BODIPY).106 1H NMR (400 MHz, chloroform-d): δ
8.07 (td, J = 7.2, 6.7, 2.1 Hz, 8H), 7.68−7.33 (m, 12H), 7.04 (s, 2H).
Reaction in Microreactors. A Corning Advanced Flow reactor

(Lab reactors) was used for the reaction investigation. To guarantee
sufficient light and reaction time, two lab reactor reaction modules
(internal volume, 2.7 mL; L × W × H, 155 mm × 125 mm × 8 mm,
with an extra white LED light strip 20 W, 4000 K) and a lab photo
reaction module (internal volume, 3 mL; L × W × H, 155 mm × 125
mm × 8 mm; equipped with an original LEDs light module, 20 W,
4000 K) were used (Figures S2 and S3). Total power of the LEDs
light was 40 W. The total internal volume of reaction modules is 8.4
mL. A circulating temperature bath (thermostat) pumped oil through
an integrated heat-exchanger to maintain the reaction temperature at
20 °C. A back pressure regulator (0−20 bar) was added to the outlet
of the lab photo reaction module to increase the solubility of O2. O2
was inlet to the reaction modules with the gas dosing line in the
dosing module (including a mass flow gas controller). The reaction
mixture was inlet to the reaction modules with the liquid dosing line
in the dosing module.
The reaction in microreactors was a recirculating reaction. The

reaction mixture was prepared by dissolving 1a (1.67g, 8 mmol), 3b
(3.68 g, 32 mmol), and H2TPP (24 mg, 0.04 mmol) in dioxane (total
volume of 20 mL) in a reaction tube (tube no. 1, 50 mL) with the

assist of ultrasound. Next, the reaction mixture (1.00 mL/min) and
O2 (10.0 mL/min, calculated at standard state (298.15 K, 1 atm))
were inlet to the microreactors with the dosing module. A back
pressure regulator (0−20 bar) connected to the outlet of the lab
photo reaction module was used to maintain the pressure at 10 bar.
The outlet of the back pressure regulator was directly attached to the
original reaction tube (tube no. 1, the reaction tube was connected to
air with a pipe to release the excess O2 and relieve pressure quickly),
and the reaction mixture was circulated. O2 was continuously inlet to
the microreactors in the full process (without reuse).

N
V

v v
total residence time 1

liq,R gas,R
= ×

+

N
V

v
total time 2

liq,R
= ×

Therefore:

V
V

v

v v
total residence time total time 1

2

liq,R

liq,R gas,R
= × ×

+

where N refers to the number of the reaction cycles. vliq,R and vgas,R
refer to the flow rate of the reaction mixture and O2 (at 10 bar),
respectively, vliq,R = 1.00 mL/min and vgas,R = 1.0 mL/min (10 bar). V1
refers to the total volume of the reaction module, V1 = 8.4 mL. V2
refers to the total volume of the reaction mixture including the
reaction mixture in the reaction module, in the pipe, and in the
reaction tube, V2 = 20 mL.

Therefore:

total residence time total time 0.21= ×

The product was isolated by the following experimental
procedures: first we added 200 mL of CH2Cl2 to the reaction
mixture, then we washed with HCl aqueous solution (1 mol/L) and
saturated brine solution, dried over anhydrous sodium sulfate, filtered,
removed the solvent by evaporating under reduced pressure, and
dried in vacuo to obtain the crude product (yield of 94%). We
removed the H2TPP by adding a mixture solution of MeOH/CH2Cl2
(to remove the H2TPP). We filtered and removed the solvent by
evaporating under reduced pressure. We purified it by chromatog-
raphy (silica gel) to afford the final product (yield of 90%).

Method To Determine the Crude Yields. The NMR yield was
determined by the normalization method of peaks area shown in
Figure S1.

Singlet Oxygen Quantum Yields. The singlet oxygen quantum
yields (Table S3) were determined according to Zhao’s literature.107

The quantum yield of singlet oxygen of the each photosensitizer was
obtained by measuring the degradation of 1,3-diphenylisobenzofuran
(DPBF) in the presence of the photosensitizers and light. A mixed
solution of the photosensitizer (5 μM) and DPBF (50 μM) in DMF
was irradiated with a white light (LEDs, 10 W), and the absorption
value at 417 nm was determined by using a UV−vis spectropho-
tometer (UV-9000S, China) every 20 s in 2 min. The control group of
adding methylene blue was conducted under the same conditions
(Φref = 0.49). The singlet oxygen quantum yield was calculated by the

equation:
k
kPS ref

PS

ref
Φ = Φ × . The observed rate constants (kobs) were

calculated from ln(A0/A) = kobs × t, where A0 and A represent the
ultraviolet visible absorbance at time 0 and time t, respectively.

■ CALCULATIONS
General. All calculations were performed with the Gaussian

09 program.108 The M06 functional109,110 was used for
geometry optimization and frequency calculations without
any symmetry or geometrical constraints. The 6-31+G(d,p)
basis set was used for C, H, N, and O atoms. To obtain more
accurate energies, single-point energy calculations were
performed with a larger basis set, 6-311++G(d,p) for C, H,
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N, and O atoms. The solvation energies were calculated on the
basis of gas-phase optimized geometries by using the CPCM
solvation model, and toluene was taken as the solvent (ε =
2.37).111 The free energy in solution obtained from such a
single-point calculation, including the Gibbs free energy
correction from the frequency calculation, was used for the
description of energy profiles.
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