This is an open access article published under an ACS AuthorChoice <u>License</u>, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Brønsted Acid-Promoted Formation of Stabilized Silylium Ions for Catalytic Friedel–Crafts C–H Silylation

Qing-An Chen, Hendrik F. T. Klare, and Martin Oestreich*

Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany

Supporting Information

ABSTRACT: A counterintuitive approach to electrophilic aromatic substitution with silicon electrophiles is disclosed. A strong Brønsted acid that would usually promote the reverse reaction, i.e., protodesilylation, was found to initiate the C–H silylation of electron-rich (hetero)arenes with hydrosilanes. Protonation of the hydrosilane followed by liberation of dihydrogen is key to success, fulfilling two purposes: to generate the stabilized silylium ion and to remove the proton released from the Wheland intermediate.

E lectrophilic aromatic substitution (S_EAr) is a valuable method for the C–H functionalization of arenes. By exploiting the electrophilicity of Me₃SiOTf, Frick and Simchen accomplished a highly regioselective C–H silylation of indoles and pyrroles three decades ago (Scheme 1A).¹ To overcome

competing protodesilylation, i.e., the reverse reaction, excess base had to be added to absorb the released protons. According to a straightforward procedure reported by Corey et al., such Alkyl₃SiOTf are accessible from the reaction between Alkyl₃SiH and TfOH (Scheme 1B).^{2,3} It is notable that the hydride and proton are removed from the reaction in the form of dihydrogen. Inspired by Corey's work, we imagined that Brønsted acids with weakly coordinating counteranions $[X]^-$ could promote the catalytic formation of stabilized silicon cations from hydrosilanes.^{4,5} The thus-generated silicon electrophiles could then participate in situ in the Friedel–Crafts C–H silylation of electron-rich (hetero)arenes (Scheme 1C). $^{1,6-8}$ Owing to the proton removal as dihydrogen, we expected this catalytic system to suppress protodesilylation.

To test our hypothesis, we investigated the stoichiometric formation of the silicon electrophile using Brønsted acid. Due to facile cleavage of the phenyl group (= protodesilylation) rather than loss of the hydride, the reaction of Me₂PhSiH (1a) with TfOH leads to HMe₂SiOTf but not to Me₂PhSiOTf (eq 1).⁹ We thus envisioned using a substantially weaker but still strong acid to avoid dephenylation. Accordingly, Brookhart's acid [H- $(OEt_2)_2$]⁺[BAr^F₄]⁻ (2)¹⁰ was employed to generate the corresponding ether-stabilized silicon cation.¹¹ D–H gas immediately evolved from the reaction after treatment of deuterium-labeled Me₂PhSiD ($1a-d_1$) with 2 (eq 2), indicating smooth proton transfer with gas evolution and coordination of Et₂O as driving forces. The formation of D–H was verified by a triplet at δ 4.44 ppm with a diagnostic coupling constant of ${}^{1}J$ = 42.6 Hz in the ¹H NMR spectrum. No cleavage of the phenyl group was observed. Instead, we obtained a biphasic system that usually indicates clathrate formation of the solvent and the newly generated silicon cation.¹² Identification of that cation by ²⁹Si NMR spectroscopy was however hampered by dynamic exchange between reversibly bound Et₂O^{f1a} and the benzene solvent, apparent from significant line broadening in the ¹H NMR spectrum. By replacing C_6D_6 with 1,2- $Cl_2C_6D_4$ as solvent, we were then able to detect $[Me_2PhSi(OEt_2)]^+[BAr^F_4]^-(3a)$ by ¹H/²⁹Si HMQC measurements and clearly establish the formation of the desired silvloxonium ion (eq 3 and Figure 1). The ²⁹Si NMR spectrum showed a characteristic signal at δ 53.2 ppm. In turn, the combination of TfOH and Et₂O in 1:2 ratio did not evolve any gas on addition to Me₂PhSiH but led to slow dephenylation.

Our group recently introduced catalytic electrophilic C–H silylations⁶ of electron-rich arenes such as indoles and anilines based on cooperative Si–H bond activation^{7b} and Lewis-acid catalysis,^{7d} respectively. With the present work, we now aim at the development of a complementary process promoted by Brønsted acid 2^{13} (Table 1). Good yield and excellent regioselectivity were obtained using 1.0 mol % of Brookhart's acid 2 in the reaction between 1-methylindole (4a) and hydrosilane 1a (4a \rightarrow 5aa, entry 1).^{14,15} No reaction was seen in the absence of $[H(OEt_2)_2]^+[BArF_4]^-$ (2), and Na⁺[BArF_4]⁻ alone did not promote this transformation (entries 2 and 3). A gradual increase of the catalyst loading from 1.0 to 4.0 mol % led to diminished yields (entries 4 and 5). This unusual trend is

Received:
 May 11, 2016

 Published:
 June 15, 2016

Journal of the American Chemical Society

Figure 1. ${}^{1}H/{}^{29}Si$ HMQC spectrum of $[Me_2PhSi(OEt_2)]^+[BAr^{F}_4]^-$ (3a) recorded in 1,2-Cl₂C₆D₄ at room temperature.

Table 1. Optimization of the C3 Silylation of Indole^a

^{*a*}All reactions were performed on a 0.20 mmol scale (based on the hydrosilane) using double the amount of the indole (0.40 mmol, 2.0 equiv) as well as the indicated amount of catalyst **2** and norbornene in toluene (0.10 mL) at 80 °C for 18 h. ^{*b*}Based on hydrosilane and determined by ¹H NMR spectroscopy or GLC analysis using 1,3,5-trimethoxybenzene as internal standard. ^{*c*}NaBAr^F₄ (1.0 mol %) added instead of $[H(OEt_2)_2]^+[BAr^F_4]^-$ (**2**).

understood as the result of protodesilylation prevalent at higher proton concentrations.¹ It also emphasizes that proton release and removal, i.e., dihydrogen release, must be well balanced to overcome this intrinsic problem. To our delight, the addition of norbornene (nbe) as a proton scavenger¹⁶ dramatically improved the yield to near-quantitative (entries 6–8). We note here that 1-methylindoline (**6a**) always formed as the byproduct, which is why these reactions were performed with the hydrosilane as the limiting reagent. Importantly, the silylated

indole **5aa** (major) and the indoline **6a** (minor) did not form in equimolar ratio (for an explanation, see Scheme 4).

Next, we examined the hydrosilane scope (Table 2). With Me₂PhSiH (1a) the isolated yield was essentially quantitative,

Table 2. Screening of Hydrosilanes in the Indole Silylation^{*a*}

4a (2.0 c	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$	H(OEt ₂) ₂]*[BAr ^F ₄] ⁻ (2 , 1.0 mol %) nbe (1.0 equiv) toluene 80 °C or rt 18 h	SiR ₃ Ne 5 (C3:C2 > 95:5)
entry	hydrosilane	T (°C)	yield $(\%)^b$
1	Me ₂ PhSiH (1a)	80	96 (5aa)
2	MePh ₂ SiH (1b)	rt	93 (5ab)
3	Ph ₃ SiH (1c)	80	8^{c} (5ac)
4	Et ₃ SiH (1d)	80	7 ^c (5ad)
5	(EtO) ₂ MeSiH (1e)	80	0^{d} (5ae)
6	Ph_2SiH_2 (1f)	rt	96 (5af)
7	MePhSiH ₂ (1g)	rt	73 ^e (7ag)
8	Et_2SiH_2 (1h)	rt	61 ^{c,f} (5ah)
9	$PhSiH_3$ (1i)	rt	74 ^e (7ai)
	Ph. Me Si Ne Me 7ag	Ph. H Si Ne Me Tai (X-ray)	

"All reactions were performed on a 0.20 mmol scale (based on 1) using double the amount of the indole (0.40 mmol, 2.0 equiv), $[H(OEt_2)_2]^+ [BAr^F_4]^-$ (2, 1.0 mol %), and norbornene (1.0 equiv) in toluene (0.10 mL) at the indicated temperature for 18 h. ^bIsolated yield after flash chromatography on silica gel. ^cDetermined by ¹H NMR spectroscopy using CH₂Br₂ as internal standard. ^d(EtO)₃SiMe and [(EtO)₂MeSi]₂O detected by GLC-MS analysis. ^e3-fold excess of the indole (0.60 mmol) used to obtain the bis(indol-3-yl)-substituted silane exclusively. ^fIndole used as the limiting reagent (0.20 mmol) together with hydrosilane **1h** (0.40 mmol); trace amounts of the corresponding bis(indol-3-yl)-substituted silane observed by GLC-MS analysis.

and the reaction proceeded smoothly with MePh₂SiH (1b) even at room temperature (entries 1 and 2). Probably due to steric hindrance, low conversion was observed for Ph_3SiH (1c) and, likewise, for Et₃SiH (1d) (entries 3 and 4). The protocol was not compatible with (EtO)₂MeSiH (1e) as a result of silvlated oxonium ion formation^{11b} (entry 5). Dihydrosilanes **1f–1h** also served as efficient coupling partners (entries 6-8). Monosubstitution was observed exclusively with Ph_2SiH_2 (1f) at room temperature (entry 6), but using a 3-fold excess of the indole, MePhSiH₂ (1g) underwent 2-fold C-H silvlation to afford the bis(indol-3-yl)-substituted silane 7ag (entry 7). Selective monosubstitution was achieved with Et_2SiH_2 (1h) when using the indole as the limiting reagent (entry 8). Again, bis(indol-3yl)-substituted silane 7ai formed from trihydrosilane PhSiH₃ (1i) (entry 9); the molecular structure of 7ai was confirmed by X-ray diffraction (see the Supporting Information for details).

Given the potential for further derivatization, Ph_2SiH_2 (1f) was used to study the scope of the regioselective C-H silylation of heteroarenes (Scheme 2). The isolated yield for 1-methylindole was 96% (4a \rightarrow 5af), and slightly higher

Scheme 2. Regioselective C-H Silylation of Heteroarenes

^{*a*}Along with <10% of the corresponding C3-silylated indoline. ^{*b*}Determined by ¹H NMR spectroscopy using CH_2Br_2 as internal standard. ^{*c*}C3:C2 = 87:13.

temperature was required to obtain 93% yield for 1,2dimethylindole $(4b \rightarrow 5bf)$. Conversely, 1,3-dimethylindole did not react (4c not to 5cf), furnishing proof of an S_EAr mechanism with the more nucleophilic indole C3 position blocked by a methyl group. 1,5-Dimethylindole underwent the C3-selective S_EAr at room temperature in high yield $(4d \rightarrow 5df)$ as did the 5-halogenated 1-methylindoles $(4e-4g \rightarrow 5ef-5gf)$; no dehalogenation was detected. These reactions were highly regioselective (C3:C2 > 95:5) as was the C-H silvlation of 6fluoro-substituted 1-methylindole ($4h \rightarrow 5hf$). Dehydrogenative Si–N coupling occurred with unprotected indole $(4i \rightarrow 5if)^{T}$ and no further reaction at C3 was found. Moderate yield (58%) and regioselectivity (C3:C2 = 87:13) were achieved with the more challenging pyrrole substrate $(4j \rightarrow 5jf)$. This catalytic system was not able to facilitate the C-H silvlation of benzofuran (4k) and benzothiophene (4l). To demonstrate the practicability of this protocol, a gram-scale synthesis of a C3-silvlated indole using MePh₂SiH (1b) was performed ($4a \rightarrow 5ab$, cf. Table 2, entry 2). With just 0.5 mol % loading of $[H(OEt_2)_2]^+[BAr_4^F]^-$ (2), the reaction on a 5.0 mmol scale furnished 1.6 g of silvlated indole 5ab in 95% isolated yield.

We then turned toward aniline derivatives as promising electron-rich arenes in the Brønsted acid-promoted silvlation with hydrosilanes (Scheme 3).7d,e As aniline reduction was not observed with this setup, we returned to using the more conventional substrate-to-reagent ratio; a 2-fold excess of the hydrosilane was required to reach high yields. The addition of nbe was also crucial.¹⁶ Indeed, N,N-dimethylaniline and Nphenylpyrrolidine reacted highly regioselectively in good yields at room temperature and 80 °C, respectively $(8a \rightarrow 9af \text{ and } 8b$ \rightarrow 9bf). The success of this silulation relies heavily on the electronic property of substituents on the aniline as ortho-fluorosubstituted congeners did not react (not shown). Alkylation in the ortho position to the electron-donating amino group as in 1methylindoline and 1-methyl-1,2,3,4-tetrahydroquinoline was tolerated $(8c \rightarrow 9cf \text{ and } 8d \rightarrow 9df)$. The *meta*-substituted derivative also participated in similar yield, maintaining excellent *para* selectivity ($8e \rightarrow 9ef$), whereas the *para*-substituted isomer was unreactive (8f not to 9ff). No silvlation occurred in the reaction with anisole (8g).

Scheme 3. Regioselective Silylation of Aniline Derivatives and Attempted Silylation of Anisole a

On the basis of the literature precedence^{2,18,20} and our own observations, we propose the following dominating catalytic cycle¹⁶ for the Brønsted acid-promoted S_EAr with an in situgenerated silicon electrophile (Scheme 4). Brookhart's acid 2 is

sufficiently strong to protonate the hydrosilane to form a pentacoordinate siliconium ion $(1 \rightarrow 10)^{.3,19}$ That transient intermediate will release dihydrogen¹⁸ to afford the donor-stabilized silylium ion $[R_3Si(donor)]^+$ $[BAr^F_4]^ (10 \rightarrow 3).$ Et_2O introduced with $[H(OEt_2)_2]^+[BAr^F_4]^-$ (2) is likely to act as the stabilizing donor (cf. eq 3 and Figure 1) but the toluene solvent^{12} will assume this role^{18b} if ether cleavage occurs in the course of the reaction. The cationic silicon electrophile 3 is then attacked by the nucleophilic indole (4a \rightarrow 11a). The resulting Wheland complex is a strong Brønsted acid with the weakly coordinating $[BAr^F_4]^-$ counteranion, and direct protonation of another hydrosilane molecule closes the catalytic cycle $(1 \rightarrow 10)$ concomitant with formation of the C3-silylated indole (11a \rightarrow 5a).^{20,21}

Formation of the indoline byproduct 6a is rationalized by competing silylium-ion catalysis. Proton transfer from intermediate 11a to the indole substrate 4a used in excess not only

Journal of the American Chemical Society

liberates the C3-silylated indole **5a** but also arrives at another Wheland complex **12a**. This step was NMR spectroscopically corroborated by the reaction of **4a** with an independently prepared sample of **11a**. Iminium ion **12a** then accepts a hydride from hydrosilane **1** to yield indoline **6a** as well as donor-stabilized silylium ion **3**; quantitative deuterium incorportation at C2 of **6a** was seen when using Me₂PhSiD (**1a**-*d*₁). This reduction pathway will not occur with the aniline substrates (not shown).

To recap, we disclosed here a counterintuitive C–H silylation of electron-rich (hetero)arenes passing through an S_EAr mechanism. The transformation is initiated by Brønsted acid-mediated generation of a highly electrophilic silicon cation from hydrosilanes. Protonation of the hydrosilane leads to loss of dihydrogen and release of the stabilized silylium ions. The Wheland intermediate then largely maintains the catalytic cycle as the proton source. No protodesilylation is observed when the amount of acid is well balanced. This protocol is a practical and straightforward way for the installation of silicon groups on arenes, thereby complementing existing transition-metal and Lewis-acid catalysis.⁶

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.6b04878.

Experimental procedures and data (PDF) Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Author

*martin.oestreich@tu-berlin.de

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Q.-A.C. gratefully acknowledges the Alexander von Humboldt Foundation for a postdoctoral fellowship (2015–2016). M.O. is indebted to the Einstein Foundation (Berlin) for an endowed professorship. We thank Dr. Elisabeth Irran (TU Berlin) for the X-ray analysis.

REFERENCES

(1) Frick, U.; Simchen, G. Synthesis 1984, 929.

(2) (a) Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. *Tetrahedron Lett.* **1981**, 22, 3455. (iPr_3SiOTf) (b) Aizpurua, J. M.; Palomo, C. *Tetrahedron Lett.* **1985**, 26, 6113 ($tBuMe_5SiOTf$).

(3) Conversely, treatment of R_3SiD (R = Me, Et, and *i*Pr) with HI in the presence of AlI₃ leads to ${}^{1}H/{}^{2}H$ exchange: Olah, G. A.; Heiliger, L.; Aniszfeld, R.; Prakash, G. K. S. *New J. Chem.* **1990**, *14*, 877.

(4) Recent reviews of silylium ions: (a) Müller, T. In *Structure and Bonding*; Scheschkewitz, D., Ed.; Springer: Berlin, 2014; Vol. 155, pp 107–162. (b) Müller, T. In *Science of Synthesis: Knowledge Updates* 2013/3; Oestreich, M., Ed.; Thieme: Stuttgart, 2013; pp 1–42. (c) Klare, H. F. T.; Oestreich, M. *Dalton Trans.* 2010, 39, 9176.

(5) Known strategies to generate silylium ions: (a) Corey, J. Y. J. Am. Chem. Soc. 1975, 97, 3237. (silicon-to-carbon hydride transfer) (b) Lambert, J. B.; Zhao, Y.; Wu, H.; Tse, W. C.; Kuhlmann, B. J. Am. Chem. Soc. 1999, 121, 5001. (allyl-leaving-group approach) (c) MacLachlan, M. J.; Bourke, S. C.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2000, 122, 2126. (ring-opening protonolysis) (d) Schäfer, A.; Reißmann, M.; Schäfer, A.; Saak, W.; Haase, D.; Müller, T. Angew. Chem., Int. Ed. 2011, 50, 12636. (substituent exchange) (e) Schäfer, A.; Reißmann, M.; Schäfer, A.; Schmidtmann, M.; Müller, T. Chem. - Eur. J. 2014, 20, 9381. (silylene protonation) (f) Simonneau, A.; Biberger, T.; Oestreich, M. Organometallics 2015, 34, 3927 (cyclohexadienyl-leaving-group approach).

(6) Recent reviews of catalytic C-H silylation: (a) Cheng, C.; Hartwig, J. F. Chem. Rev. 2015, 115, 8946. (b) Yang, Y.; Wang, C. Sci. China: Chem. 2015, 58, 1266. (c) Xu, Z.; Huang, W.-S.; Zhang, J.; Xu, L.-W. Synthesis 2015, 47, 3645. (d) Sharma, R.; Kumar, R.; Kumar, I.; Singh, B.; Sharma, U. Synthesis 2015, 47, 2347.

(7) Intermolecular Friedel-Crafts-type C-H silylations: (a) Furukawa, S.; Kobayashi, J.; Kawashima, T. Dalton Trans. 2010, 39, 9329.
(b) Klare, H. F. T.; Oestreich, M.; Ito, J.-i.; Nishiyama, H.; Ohki, Y.; Tatsumi, K. J. Am. Chem. Soc. 2011, 133, 3312. (c) Curless, L. D.; Clark, E. R.; Dunsford, J. J.; Ingleson, M. J. Chem. Commun. 2014, 50, 5270.
(d) Yin, Q.; Klare, H. F. T.; Oestreich, M. Angew. Chem., Int. Ed. 2016, 55, 3204. (e) Ma, Y.; Wang, B.; Zhang, L.; Hou, Z. J. Am. Chem. Soc. 2016, 138, 3663.

(8) Intramolecular Friedel–Crafts-type C–H silylations: (a) Furukawa, S.; Kobayashi, J.; Kawashima, T. J. Am. Chem. Soc. 2009, 131, 14192.
(b) Ref 7a. (c) Curless, L. D.; Ingleson, M. J. Organometallics 2014, 33, 7241. (d) Omann, L.; Oestreich, M. Angew. Chem., Int. Ed. 2015, 54, 10276.

(9) (a) Bassindale, A. R.; Stout, T. J. Organomet. Chem. 1984, 271, C1.
(b) Uhlig, W.; Tzschach, A. J. Organomet. Chem. 1989, 378, C1.

(10) Brookhart, M.; Grant, B.; Volpe, A. F., Jr. Organometallics 1992, 11, 3920.

(11) For studies on silyloxonium ions, see: (a) Kira, M.; Hino, T.;
Sakurai, H. J. Am. Chem. Soc. 1992, 114, 6697. (b) Olah, G. A.; Li, X.-Y.;
Wang, Q.; Rasul, G.; Prakash, G. K. S. J. Am. Chem. Soc. 1995, 117, 8962.
(c) Olah, G. A.; Rasul, G.; Prakash, G. K. S. J. Organomet. Chem. 1996, 521, 271.

(12) (a) Lambert, J. B.; Zhang, S.; Stern, C. L.; Huffman, J. C. Science 1993, 260, 1917. (b) Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13, 2430.

(13) We were aware of the fact that $[H(OEt_2)_2]^+[BAr^F_4]^-$ (2) is not stable in CH₂Cl₂, forming HAr^F and BAr^F₃ (ref 10). The electrondeficient borane BAr^F₃ could act as the Lewis acid catalyst (cf. refs 7d and 7e). While we verified the instability of 2 in toluene, we also found that 2 shows enhanced stability in the presence of the hydrosilane and is perfectly stable in the presence of the indole. The $[BAr^F_4]^-$ counteranion is recovered after the reaction.

(14) Catalytic C2 silylation of indoles: (a) Lu, B.; Falck, J. R. Angew. Chem., Int. Ed. 2008, 47, 7508. (b) Minami, Y.; Komiyama, T.; Hiyama, T. Chem. Lett. 2015, 44, 1065. (c) Toutov, A. A.; Liu, W.-B.; Betz, K. N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H. Nature 2015, 518, 80. (d) Devaraj, K.; Sollert, C.; Juds, C.; Gates, P. J.; Pilarski, L. T. Chem. Commun. 2016, 52, 5868.

(15) Catalytic C3 silylation of indoles: (a) Ishiyama, T.; Sato, K.; Nishio, Y.; Saiki, T.; Miyaura, N. *Chem. Commun.* **2005**, 5065. (b) Ref 7b. (c) Ref 7c. (d) Sunada, Y.; Soejima, H.; Nagashima, H. *Organometallics* **2014**, 33, 5936. (e) Ref 8c. (f) Cheng, C.; Hartwig, J. F. *J. Am. Chem. Soc.* **2015**, *137*, 592. (g) Ito, J.-i.; Hosokawa, S.; Khalid, H. B.; Nishiyama, H. *Organometallics* **2015**, *34*, 1377.

(16) The fate of nbe is likely its cationic polymerization, as we detected neither norbornane nor its silylated congener by GLC–MS analysis.

(17) Königs, C. D. F.; Müller, M. F.; Aiguabella, N.; Klare, H. F. T.; Oestreich, M. Chem. Commun. 2013, 49, 1506.

(18) (a) Description of gas evolution: Nava, M.; Reed, C. A. *Organometallics* **2011**, *30*, 4798. (b) Detection of dihydrogen gas and an explanation of its origin: Connelly, S. J.; Kaminsky, W.; Heinekey, D. M. *Organometallics* **2013**, *32*, 7478.

(19) This assumption is corroborated by theoretical and gas-phase studies on SiH_{5}^+ : (a) Sefcik, M. D.; Henis, J. M. S.; Gaspar, P. P. *J. Chem. Phys.* **1974**, *61*, 4329. (b) Hu, C.-H.; Shen, M.; Schaefer, H. F., III *Chem. Phys. Lett.* **1992**, *190*, 543.

(20) Heinekey et al. also noted in their work catalytic hydrosilane consumption by the benzene-stabilized silicon cation in benzene solvent (cf. ref 18b).

(21) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.