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Photo-induced catalytic halopyridylation of alkenes
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Qing-An Chen 1,2✉

The Mizoroki-Heck reaction and its reductive analogue are staples of organic synthesis, but

the ensuing products often lack a chemical handle for further transformation. Here we report

an atom-economical cross-coupling of halopyridines and unactivated alkenes under photo-

redox catalysis to afford a series of alkene halopyridylation products. This protocol with mild

and redox neutral conditions contributes broad substrate scope. As a complement to con-

ventional Heck-type reaction, this radical process avoids the involvement of β-H elimination

and thus useful pyridyl and halide groups could be simultaneously and regioselectively

incorporated onto alkenes. The success depends on TFA-promoted domino photocatalytic

oxidative quenching activation and radical-polar crossover pathway. Plausible mechanism is

proposed based on mechanistic investigations. Moreover, the reserved C− X bonds of these

products are beneficial for performing further synthetic elaborations.
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The rapid elaboration of molecular complexity from simple
substrates has always been a fundamental theme in organic
chemistry. Among those known methods, catalytic func-

tionalizations of alkenes have gained much attention owing to the
low cost and easy availability1–9. Of particular note is classical
Heck cross-coupling that provides a rapid access to arylated
alkenes (Fig. 1a)10–14. Besides, with an introduction of external
hydride sources, a variety of reductive Heck-type products could
be readily obtained via hydroarylation of alkenes (Fig. 1b)15–18.
While they have wide applicability, both processes involve an
elimination of halide atoms as inevitable waste.

On the other hand, the selective construction of C−X bond is of
great significance as it provides an important synthetic handle for
the incorporation of diverse functional groups19–25. In this context,
it is appealing to exploit a complementary cross-coupling featuring
installation of new C−C and C−X bonds onto alkenes simulta-
neously without sacrifice of any atoms. Following this concept,
elegant intramolecular haloarylations of alkenes have been estab-
lished by Lautens, Glorius, Tong etc26–35. Their success usually
relies on the employment of terminal disubstituted alkenes that can
lead to an alkyl Pd or Ni halide intermediate without a syn β-H
atom (Fig. 1c). Besides, the haloarylation of ethylene and propylene
with aryl chlorides normally requires carcinogenic high-energy
ultraviolet (UV) light36. Despite these impressive advances, visible

light-induced catalytic intermolecular haloarylation of wide simple
alkenes with aryl halides still remains underexplored.

In recent years, photoredox catalysis37–43 represents the state-of-
the-art technique to promote functionalizations of alkenes44–48.
Owing to the ubiquitous role of pyridyl motifs as aromatic het-
erocycle in ligand scaffolds, natural products, and medically relevant
molecules49–53, significant efforts have been devoted to visible light-
driven pyridylation of alkenes54–63. Intrigued by these precedents
and our continued interest on alkenes functionalizations64–67, we
questioned whether it is possible to simultaneously install both
pyridyl and halide groups onto alkenes which possess a potential
syn β-H atom.

Herein, this goal has been achieved by coupling of unactivated
alkenes and halopyridines under visible light condition (Fig. 1d).
This halopyridylation transformation is enabled by domino
photocatalytic oxidative quenching activation and radical-polar
crossover pathway. It provides an important complement for
known precedents about Heck reactions with respect to product
diversity and atom economy.

Results
Reaction optimization. Initially, under blue light irradiation,
2-bromo-6-methylpyridine 1a and 1-hexene 2a were selected as

Fig. 1 Cross-coupling of aryl halides with alkenes. a Classical Heck reaction. b Reductive Heck reaction. c Intramolecular halo alytic halopyridylation of
alkenes. d Photo-induced catalytic halopyridylation of alkenes.
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model substrates to optimize the reaction (Table 1 and Supple-
mentary Tables 1–8 in Supplementary Information). First, as
state-of-the-art photocatalytic strategy of pyridyl radical genera-
tion, Jui’s elegant protocols56,59 were applied to these substrates.
Both results clearly shown that there was no detectable bromo-
pyridylation product 3aa formed under Jui’s conditions (Table 1,
entries 1–2). Only a trace amount of product 3aa could be
detected in the absence of HEH (Hantzsch ester) (entries 3–4).
Based on these results, Jui’s reductive quenching activation of
halopyridine conditions were not suitable for the desired C–X
bond formation. According to general principle for the con-
struction of C–X bond, we envisioned that oxidative quenching
activation of halopyridine would divert the reactivity from
hydropyridylation towards halopyridylation of alkenes.

After careful evaluation for oxidative quenching activation of
bromopyridine 1a, the desired bromopyridylation product 3aa
was furnished in 89% yield using [Ir(ppy)2(dtbbpy)]PF6 (Ir-PC
A) as photocatalyst and TFA (Trifluoroacetic acid) as additive
(Table 1, entry 5). No target product was obtained in the absence
of photocatalyst or in dark environment (entries 6 and 7). Strong
electron-deficient photocatalyst (Ir-PC B) and tris(2-phenylpyr-
idine)iridium (Ir-PC D) showed no catalytic performance, while
4-fluorophenylpyridine derived catalyst (Ir-PC C) gave a slightly
decreased yield (entry 8). Other commonly used organophoto-
catalysts such as Eosin Y and (Acr-Mes)ClO4 were also examined
but found to be ineffective (entry 9). Moreover, the Brønsted acid
additive was essential for the process and the acidity also exerted
an important influence on the outcomes (entries 10 and 11).
For instance, weak acid AcOH could not promote the reaction,
whereas (PhO)2POOH and PhSO3H delivered the target product
3aa in 76% and 80% yields, respectively (entry 11). Strongly polar
protic solvent, such as TFE (Trifluoroethanol) and hexafluor-
oisopropanol (HFIP) were both competent solvents for this
reaction, but EtOH was not feasible (entry 12). The reaction could
not take place under thermal conditions or air atmosphere
(entries 13 and 14).

Substrate scope. Having identified optimized conditions, the
substrate scope with respect to alkenes was examined (Fig. 2a). To
our delight, a number of terminal alkenes, including terminal α-
alkenes (3aa-3ae) and 1,1-disubstituted alkenes (3af, 3ag) could
be successfully bromopyridylated under this protocol. Notably,
alkenes with free hydroxyl group were suitable coupling partners
as well, affording desired products in moderate to good yields
(3ac, 3ad, and 3ag). In addition to terminal alkenes, this protocol
could be extended to internal alkenes (3ah-3al). For example,
bromopyridylation of trans-4-octene delivered the expected
product 3ah in 84% yield with 2:1 dr. A variety of cyclic internal
alkenes, including cyclopentene, cyclohexene, and norbornene
were also well tolerated to furnish the corresponding products in
81–90% yields (3ai-3ak). Gratifyingly, the treatment of trisub-
stituted alkene with standard conditions resulted in the genera-
tion of single product 3al in 69% yield. The exclusive
regioselectivity is presumably ascribed to the favorable pyridyl
radical addition at the less hindered alkene carbon, which could
also lead to a more stable tertiary carbon radical or carbocation.
Unsurprisingly, only trace amount of bromopyridylated product
3am was observed for the coupling with tetrasubstituted alkene.
When non-conjugated dienes were subjected to this reaction
conditions, one carbon–carbon double bond could be selectively
reserved for potential product diversity (3an and 3ao).

Subsequently, we turned our attention to the investigation on
the scope of halopyridines using 1-hexene as the model alkene. As
shown in Fig. 2b, a broad range of bromopyridines, including

alkyl-substituted (3ba-3fa), unsubstituted (3ga, 3ha), and dis-
ubstituted bromopyridines (3ia-3ka) proved to be smoothly
accommodated to this protocol. The position of alkyl substituents
(methyl and alkoxy) in bromopyridines had no great influence on
the yields of products (3ba-3fa). Simple 2- and 4-bromopyridines
were also amenable to the transformation, but the bromine
substituent at 2-position seemed to be more reactive (3ga, 3ha).
Notably, in the cases of 2,3- and 2,5-dibromopyridines, the
reaction selectively took place at the 2-position with the
preservation of 5- or 3-bromo group for further synthetic
elaboration (3ia and 3ja). In comparison, 2,6-dibromopyridine
could react with two molecules of 1-hexene to produce 3ka in
70% yield. Moreover, this protocol could also be extended
to a variety of chloro and iodopyridines (3la-3pa) which might
be great challenges for traditional metal catalysis in terms of
substrate activation or product overreaction. However, bromo-
pyridine substrates bearing strong electron withdrawing groups
were not suitable for this reaction. It probably resulted from the
protonation of electron-deficient pyridines with TFA may not be
favored, which would be detrimental to product formation
(Supplementary Table 9 in Supplementary Information).

To magnify the potential merit of current photocatalytic
protocol, we assessed the late-stage halopyridylation of several
complex scaffolds based on natural products and drug molecules,
as illustrated in Fig. 2c. Specifically, terpenes substrate perilla
aldehyde was feasibly transformed into the corresponding
bromopyridylation product 4a in 75% yield and the unique
chemoselectivity for terminal alkene over internal alkene was
displayed. In addition, complex molecules containing diverse
structural features, such as carbohydrate (4b), sulfonamide (4c),
and steroid (4d) under the standard conditions were also tested to
effectively deliver corresponding products in 67–85% yields,
indicating that this method could give rapidly access to a wide
range of valuable halide and pyridyl containing scaffolds.

Additionally, owing to the versatile role of organohalides, we
further explored the reactions between different halopyridines
and halogenated alkenes to synthesize a series of dihalogenated
alkylpyridine compounds (Fig. 2d). To our delight, (pseudo)halo-
substituted (Cl-, Br-, I-, and TsO-) alkenes could undergo
halopyridylation smoothly to afford the dihalogenated alkylpyr-
idine products 5a-5l in moderate to good yields. These results
above adequately exemplify the mild nature of the photocatalytic
system by bearing the high tolerance of various functional groups
and demonstrate the attractive synthetic utility of this halopyr-
idylation of unactivated alkenes method.

Mechanistic investigations. To probe the mechanism of this
photo-induced alkenes halopyridylation, preliminary mechanistic
investigations have been conducted (Figs. 3 and 4). The addition
of radical scavengers TEMPO (2,2,6,6-Tetramethylpiperidinooxy)
or BHT (Butylated Hydroxytoluene) to the reaction mixture
almost inhibited this reaction (Fig. 3a).The observation of BHT-
pyridyl adduct 6 suggests that the pyridyl radical generation is
probably involved in this transformation. Stern−Volmer fluor-
escence quenching experiments were performed on all reactants
of 1a, 2a, TFA, and 1a+TFA mixture, respectively (Fig. 3b, c and
Supplementary Figs. 3–6 in Supplementary Information). The
results clearly shown that only the combination of 1a+TFA could
dramatically quenched the excited state Ir-PC A* (Fig. 3b, c),
which indicates an oxidative quenching activation and the pro-
tonated pyridine as the effective quencher in the photocatalytic
quenching cycle.

In order to get insight into photoredox process, cyclic
voltammetry experiments were further analyzed. As shown in
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Fig. 3d, a sharp reduction peak of 1a with E1/2red=−0.76 V
(vs. SCE) was observed in the cathodic reduction scan in TFE,
and the 1a+TFA mixture (1:1 molar ratio) could rise to
E1/2red= -0.69 V (vs. SCE). Moreover, when the solvent was

changed to EtOH, reduction potential of the 1a+TFA mixture fell
to E1/2red=−0.95 V (vs. SCE) (Fig. 3e). These results suggest that
the halopyridine substrate is most likely protonated first by
the Brønsted acid TFA and gets stronger oxidizing properties.

Fig. 2 Substrate scope. a Simple alkenes scope. b Halopyridines scope. c Natural products and drug derivatives. d Dihalo-alkylpyridines synthesis. aYields
of isolated products. Diastereoselectivity (dr) was determined by 1H NMR analysis. b4.0 equivalents of 2a was used. c20 h. PC photocatalyst.
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Light on/off control experiments were performed to obtain the
reactivity profile of this protocol (Fig. 3f). It is found that the
product generation was blocked immediately when the light was
turned off and resumed efficiently when turned on, indicating
that constant light irradiation is essential for this transformation.
The resultant long radical chain progress may be unlikely,
considering a relatively low quantum yield (Φ= 0.685, Page S29
in Supplementary Information).

On the other hand, halide anions competition experiments
were carried out to verify the radical-polar crossover pathway to
give ATRA-type products (Fig. 4). When 2-Cl-pyridine 1m and
1-hexene 2a were subjected to this standard conditions in the
presence of KBr (1.0 equiv.), the expected chloride product 3ma
and crossover bromide product 3ga were isolated in 8% and 24%
yields, respectively (Fig. 4a, eq 1). Based on the kinetic studies

results, the formation of crossover bromide product 3ga
dominated during the whole process (Fig. 4a, chart 1). When 2-
Br-pyridine 1 g reacted with 2a in the presence of KCl (1.0
equiv.), similar but higher yields for halopyridylation products
were obtained (60% 3ga and 17% 3ma) (Fig. 4a, eq 2). With the
help of these kinetic results, the higher reactivity probably
resulted from the easier generation of pyridyl radical from 2-Br-
pyridine 1g than 2-Cl-pyridine 1m (eq 2 vs. eq 1). Additionally,
in the absence of extra potassium halide salt, bromide products
(3ga and 3aa) also dominated over chloride derivatives (3ma and
3la) in the crossover reaction between 2-Cl-pyridine 1m and
2-Br-6-Me-pyridine 1a (Fig. 4b). In general, bromide anion
exhibited weaker nucleophilicity than chloride one due to its
weaker negative charge density. However, owing to a strong
hydrogen bonding interaction in polar protic solvent TFE, the

Fig. 3 Mechanistic investigations. a Radical trapping experiments. b Fluorescence quenching experiments of Ir-PC A with various concentrations of
1a+ TFA in TFE solution. c Stern−Volmer plots of Ir-PC A with different quenchers. d Cyclic voltammograms of 1a and 1a+ TFA in 0.1 M TBAPF6 TFE
solution. e Cyclic voltammograms of 1a+ TFA in 0.1 M TBAPF6 TFE solution and EtOH solution. f Light on/off experiments.

Fig. 4 Halide anions competition experiments. a Kinetic studies of halide anions competition. b Crossover experiments. c Interchange experiments.
d Determination of elimination byproduct.
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nucleophilic ability was switched and bromide anion turned to be
a better nucleophile. Besides, the resubjection of halide product
3ma and 3ga to the standard conditions delivered no detectable
halide exchange products (Fig. 4c, eq 3). This negative halide
interchange result indicates that the current photo-induced
protocol will not cleavage alkyl carbon-halide bond which will
be common issues for transition metal catalysis. Interestingly,
the halogen exchange of halopyridines could slightly occur in
the presence of extra potassium halide salt (Fig. 4c, eq 4).
Moreover, Heck-type byproduct 3aa’ was obtain in 6% yield
under optimized reaction condition, which was formed via β-H
elimination of carbon cation intermediate. This suggests that a
radical-polar crossover mechanism via alkyl carbocation inter-
mediate is operative for the C-X bond formation (Fig. 4d).

Based on the experimental results above and literatures, a
possible mechanism of this photo-induced catalytic halopyridyla-
tion of alkenes is proposed in Fig. 5a. Initially, irradiation of [Ir]III

gives rise to its excited state *[Ir]III. Then halopyridine 1 is
protonated in the presence of TFA in TFE and reduced by *[Ir]III
to generate pyridyl cation radical B, along with [Ir]IV and halide
anion. The subsequent electrophilic addition of protonated
pyridyl radical B to nucleophilic alkene 2 produces the secondary
alkyl radical C. Alkyl radical C undergoes polarity-matched SET
with [Ir]IV to give carbocation D68,69, and regenerates the [Ir]III

photocatalyst. The resulting carbocation D is then trapped by
halide anion to produce the final ATRA-type product. An
alternative radical-chain propagation cannot be excluded, but is
probably not a favored pathway.

Redox potential analysis has been posted to explain the
differences between this protocol and Jui’s works56,59 in
mechanism (Fig. 5b, c). In this work, the desired pyridyl radical
is generated via an oxidative quenching activation. The proto-
nated halopyridyl trifluoroacetate possessing higher reduction
potential (E1/2red= -0.69 V) is facial to be reduced by excited state
*[Ir]III [E1/2(*IrIII/IrIV)=−0.96 V]. After radical addition, redox
potential of the alkyl radical C (E1/2Oxi= 0.47 V)70 and [Ir]IV [E1/
2 (IrIV/IrIII)= 1.21 V] matches each other, occurring SET to
produce carbocation D and regenerate [Ir]III. Contrarily, Jui’s
works utilized the reductive quenching by HEH to give [Ir]II [E1/
2(IrII/IrIII)=−1.51 V]. Then pyridyl radical was generated from
the reductive activation of halopyridines (E1/2red=−1.1 V). So
hantzsch ester (HEH) is indispensable in Jui’s conditions for the

reductive quenching cycle which is obstacle for the halopyridyla-
tion of alkenes (Fig. 5d).

Finally, gram-scale reactions and further transformations of
this protocol were conducted to demonstrate the synthetic utility.
As shown in Fig. 6, 84%, 89%, and 75% yields of chloro-, bromo-,
and iodo-pyridylation products could be isolated respectively
under standard conditions (3ma, 3ga, and 3pa). Furthermore, the
C−X bonds of these products are beneficial for performing
further synthetic elaborations. It have been showed that the
halopyridination products 3ga and 3ma could undergo many
useful transformations, such elimination (7a and 7b), and
substitution by sulfinate (7c), thiocyanate (7d), thiophenol (7e),
and azidation (7 f and 7 g) in moderate to good yields (Fig. 6).

Discussion
In this work, we have developed a photo-induced catalytic
halopyridylation of unactivated alkenes. Using halogenated pyr-
idines as dual pyridyl and halogen source, new C−C bond and C
−X bond are simultaneously and regioselectively constructed
under mild conditions. It also features an excellent atom and step
economy for the late-stage halopyridylation of complex mole-
cules. Tackling the challenging issue from β-H elimination and
alkyl C−X cleavage, this photo-induced catalysis complements
traditional transition metal catalysis in terms of mechanism and
product diversity. Moreover, this protocol has good synthetic
utility for scale-up preparation, and the C−X bonds of these
halopyridination products can serve as versatile handle for further
transformations.

Methods
General procedure for photo-induced catalytic halopyridylation of alkenes. To
an oven-dried 4 mL vial was added Ir(ppy)2(dtbbpy)PF6 (0.005 mmol, 1.0 mol%),
halopyridines 1 (0.5 mmol, 1.0 equiv.), alkenes 2 (1.5 mmol, 3.0 equiv.), TFA
(0.5 mmol, 1.0 equiv.), and TFE (2.5 mL, 0.2 M) in the nitrogen glove box. The vial
was capped with a septum and wrapped with parafilm. The reaction mixture was
stirred for 16 h under visible light irradiation (1 × Kessil PR160, λmax= 456 nm,
40W, irradiation temperature maintained between 25 and 30 °C). Upon comple-
tion, the crude product was neutralized with saturated NaHCO3 solution or Et3N
and extracted with ethyl acetate. Organic layer was washed with brine solution and
dried over anhydrous Na2SO4. Removal of the organic solvent in a vacuum rota-
vapor followed by flash silica gel column chromatographic purification to afford
the desired products in moderate to good yields.

Fig. 5 Proposed mechanism and comparison. a Plausible mechanism. b Redox potential of this work. c Redox potential of Jui’s works. d Reaction
comparison.
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