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CPA-catalyzed multicomponent reaction
of anilines, aldehydes, and azetidinones: Rapid
access to enantiopure-fused azetidines

Lei-Lei Qian,1,2 Yan-Cheng Hu,1,2,* Xiang-Ting Min,1,2 Sa-Na Yang,1,2 Bing-Xue Shen,1,2

Boshun Wan,1,2 and Qing-An Chen1,2,3,*
THE BIGGER PICTURE

Enantiopure-fused azetidines are

widespread in natural products

and medically relevant molecules.

Therefore, exploration of efficient

catalytic systems for rapid

assembly of such important

frameworks is in great demand.

Compared with significant

advances achieved in transition-

metal catalysis, organocatalytic

strategies lag far behind. Here,

this is accomplished with chiral

phosphoric acid (CPA) catalysis

using commercially available

anilines, benzaldehydes, and

azetidinones as starting materials.

This protocol enables one-step

construction of three contiguous

stereocenters with high diastereo-

and enantioselectivities. DFT

calculations imply that a stepwise

mechanism consisting of

enamine-imine addition and

Friedel-Crafts attack is likely

involved. This work not only

provides an efficient alternative to

access chiral fused azetidines but

also opens up an avenue to design

other asymmetric

multicomponent reactions.
SUMMARY

The wide occurrence of enantiopure-fused azetidines in various
bioactive molecules leads to a great demand for their efficient syn-
thetic methods. However, so far, organocatalytic protocols have
been rather limited. Here we develop a chiral phosphoric acid
(CPA)-catalyzed multicomponent reaction of anilines, aldehydes,
and azetidinones to access tetrahydroquinoline-fused azetidines
with three contiguous stereocenters. Noteworthy features include
complete diastereocontrol, high enantioselectivity, good yields,
and broad functional group tolerance. Successful implementation
of this strategy relies on dual activation of imine and enamine inter-
mediates with CPA. This work not only contributes an efficient
organocatalytic assembly of chiral fused azetidines but also pro-
vides a paradigm for designing other asymmetric multicomponent
reactions.

INTRODUCTION

Fused azetidines are privileged structural motifs found in a wide range of naturally

occurring alkaloids (e.g., gelsemoxonine and calydaphninone) and drugs (e.g., peni-

cillin and clavulanic acid), as shown in Figure 1A.1–3 Azetidines fused to pyrrolidine

and piperidine have been demonstrated to be potent neuronal nicotinic receptor

agonists.4,5 Therefore, selective construction of fused azetidines has attracted

immense attention over the past decades.6–11 Specifically, much progress has

been made regarding their enantioselective synthesis.12–15 However, compared

with asymmetric transition-metal catalysis,16–21 organocatalytic assembly of enan-

tiopure fused azetidines avoiding heavy metal residue issues lags far behind. In

2011, an important kinetic resolution of racemic fused azetidines was reported (Fig-

ure 1B).22,23 The high enantioselectivities of this resolution resulted from the sacri-

fice of half premade azetidines. Under N-heterocyclic carbene (NHC) catalysis,

another elegant protocol was developed through bimolecular annulations of enals

and unsaturated ketimines (Figure 1C).24–26 Despite these advances, exploration

of other asymmetric organocatalytic approaches for accessing chiral fused azeti-

dines from simple substrates is still highly desirable.

The catalytic asymmetric multicomponent reaction (MCR), featuring simultaneous

generationofmultiple stereocenters in a single step, is one of themost powerful tools

for rapid assembly of molecular complexity from simple substrates.27–29 Because of

our ongoing interest in this area,30,31 we selected commercially available aniline,

benzaldehyde, and cycloketone as starting materials to study their multicomponent

Mannich reaction (Figure 2A).32–35 With diphenyl phosphate as the catalyst, the ring
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Figure 1. Synthesis of enantiopure-fused azetidines via asymmetric organocatalysis

(A) Representative natural products and bioactive molecules that contain fused azetidines.

(B) Asymmetric kinetic resolution of racemic fused azetidines.

(C) Bimolecular assembly of enantiopure-fused azetidines via chiral N-heterocyclic carbene (NHC) catalysis.

(D) Multicomponent assembly of enantiopure-fused azetidines via chiral phosphoric acid (CPA) catalysis.

Boc, tert-butoxycarbonyl.
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size of cycloketones had a significant effect on chemoselectivity. For cyclohexanone,

Mannich andAldol adducts (I, II) were observed, whereas only theAldol reaction took

place (III) in the case of cyclopentanone. When N-tosyl 3-azetidinone was involved,

an unexpected tetrahydroquinoline-fused azetidine IV was obtained with an endo/

exo ratio of 2/1. Aided by phosphoric acid, the in-situ-formed enamine and imine in-

termediates could react easily to yield theMannich adduct. The exo-cyclic C=Nbond

increases the strain energy of the four-membered ring, and subsequent strain-

release drives the Friedel-Crafts attack of the N-phenyl ring onto the C=N bond to

furnish product IV.36 Given the importance of such a tricyclic framework, tremendous

effort was directed toward this serendipitous finding. However, facile formation of

various reactive intermediates, such as imine, enamine, and self- and cross-Aldol ad-

ducts, likelymakes the final systemuncontrollable and complex. Thus, achieving high

levels of chemo-, diastereo-, and enantiocontrol is by nomeans an easy task. Here, by

employing chiral phosphoric acid (CPA) as the catalyst, a highly stereoselective MCR

of anilines, aldehydes, and azetidinones is developed, which provides rapid entry to

enantiopure tetrahydroquinoline-fused azetidines (Figure 1D).

RESULTS AND DISCUSSION

Optimization of reaction conditions

At the outset, commonly used BINOL (1,1’-bi-2-naphthol)-derived CPA A1 was em-

ployed as a potential catalyst to induce the chirality of fused azetidine (Figure 2B).

The reaction took place readily, leading to the expected product 4a in 20% ee

and 2/1 dr. H8-BINOL-type CPA A2 provided comparable results. When changing

the catalyst to 4-methylphenyl-substituted CPA A3, which can better form a chiral

pocket, the enantioselectivity improved to 86%. 4-Chlorophenyl-substituted CPA
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Figure 2. Catalytic MCR of anilines, aldehydes, and azetidinones

(A) Serendipitous selectivity induced by ring size. Isolated yields were given.

(B) Control of enantio- and diastereoselectivity under CPA catalysis. NMR yields were given.

(C) The effect of the four-membered ring on enantio- and diastereoselectivity. Isolated yields were given. Reaction conditions: 1a (0.40 mmol), 2

(0.20 mmol), 3a (0.20 mmol), CPA (2.5 mol %), toluene (1.0 mL), 60�C for 16 h. dr (diastereoselectivity) and ee (enantioselectivity) were determined by 1H

NMR and chiral HPLC analysis, respectively.

Ts, p-toluenesulfonyl; Fmoc, 9-fluorenylmethoxycarbonyl; THF, tetrahydrofuran; DCE, 1,2-dichloroethane.
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(A4) slightly increased the selectivity. In the case of biphenyl-substituted CPA (A5),

4a was obtained in 74% yield with 90% ee and 4/1 dr. However, the bulky tri-isopro-

pyl on the phenyl ring (A6) might hamper activation of enamine and imine interme-

diates, resulting in a significant decline in efficiency. 9-Anthryl- and -phenanthryl-

derived CPAs did not give positive results. The reactions in other solvents, including

CH3CN, tetrahydrofuran (THF), and 1,2-dichloroethane (DCE), all delivered the

target product in decreased ee. Subsequently, a variety of protecting groups on

the nitrogen atom of 3-azetidinone were surveyed (Figure 2C). Use of 4-tBu phenyl-

sulfonyl substrate could not enhance the diastereoselectivity (4b). In comparison,

the acetyl and benzyl groups led to high dr but with moderate yields and ee (4c

and 4d). N-9-fluorenylmethoxycarbonyl (Fmoc) and -tert-butoxycarbonyl (Boc) aze-

tidinones underwent transformation with exclusive diastereoselectivity (4e and 4f),
2026 Chem Catalysis 2, 2024–2033, August 18, 2022
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Figure 3. Substrate scope of CPA-catalyzed MCR of anilines, aldehydes, and azetidinones

Reaction conditions: 1 (0.40 mmol), 2 (0.20 mmol), 3 (0.20 mmol), A5 (2.5 mol %), toluene (1.0 mL), 60�C, 16 h. Isolated yields were given. dr and ee were

determined by 1H NMR and chiral HPLC analysis, respectively.
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but the latter produced a better yield (88%) and enantioselectivity (94% ee). More-

over, oxetanone and cyclobutanone were accommodated with the transformation as

well, but with decreased enantio- and diastereoselectivity (4g and 4h).

Substrate scope

Having established the optimal reaction conditions, we then explored the generality

of this enantioselective MCR. A variety of anilines bearing different substituents

were first examined, and the results are summarized in Figure 3. With biphenyl-

substituted H8-BINOL-derived CPA A5 as the catalyst, electron-donating para-

substituted anilines (-Me and -OMe) worked well in the protocol, giving the desired

products with good yields and diastereo- and enantioselectivities (4i and 4n). In

contrast, strong electron-deficient 4-(trifluoromethyl)aniline was not compatible

with the process because of its low reactivity for the Friedel-Crafts addition step.

For similar reason, 4-(trifluoromethoxy)aniline was converted to product 4o with a

decreased yield but good dr and ee. With these results, we surmised that the reac-

tion of electron-rich N-PMP (para-methoxyphenyl) imine, azetidinone, and electron-

deficient 4-(trifluoromethyl)aniline might provide a crossover product. However, this

attempt failed, and only the homo product 4n was afforded, possibly because the

imine can be rapidly converted to the initial starting materials 4-methoxyaniline

and benzaldehyde under the reaction conditions. A set of halogens, including -F,

-Cl, -Br, and -I, at the para position of aniline was well tolerated, and the

expected products were delivered with 67%–83% yields with excellent enantiocon-

trol (91%–99% ee, 4j–4m). Notably, meta-substituted anilines were also applicable

to the process, and no regioselectivity issue was observed (4p–4r). The absolute

configuration of the enantiopure-fused azetidine was determined by X-ray

crystallography analysis of product 4q (Cambridge Crystallographic Data Center

[CCDC]: 2026566). Treatment with 2-fluoroaniline under standard conditions

furnished Mannich adduct 4s as a main product, likely because the second

Friedel-Crafts step was hampered by the ortho substituent.

The substrate scope with respect to benzaldehydes was further investigated (Fig-

ure 3). A wide range of 3- and 4-substituted benzaldehydes was suitable with the pro-

tocol, regardless of the electronic and steric factors of the substituents. For instance,

electron-rich benzaldehydes participated well in this transformation, giving rise to

the desired fused azetidines in 91%–98% ee (5a, 5f, 5i, 5j, and 5m). Strong elec-

tron-deficient 4-nitrobenzaldehyde was readily transformed into 5g with 77% yield

and 97% ee. This process could be successfully extended to diverse halogen-derived

substrates, and the target products were afforded with good yield and selectivity

(5b–5e, 5k, and 5l). Bulky 4-tBu benzaldehyde and 2-formylnaphthalene proved to

be viable substrates as well, furnishing the corresponding adducts 5h and 5n in

92% and 97% ee, respectively. The desired azetidine 5o could also be obtained in

the coupling ofortho-substituted (2-F) benzaldehyde. Aliphatic aldehydes, cyclohex-

anecarboxaldehyde for instance, were not compatible with the process. 2-Methyl-

substituted azetidinone also worked well in this transformation, providing the

expected adduct 5p with 58% yield and 96% ee.

Mechanistic studies

To gain deeper insights into the reaction pathway, additional control experiments

were carried out. An investigation of non-linear effects revealed that even with 20%
2028 Chem Catalysis 2, 2024–2033, August 18, 2022
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Figure 4. Mechanistic investigations and further de-protection

(A) Non-linear effects.

(B) Photograph of enantiopure and racemic catalysts in toluene after stirring at 60�C for 16 h.

(C) Kinetic isotope effect.

(D) Crossover experiments. The ratio of the four products was determined by 1H NMR of the crude mixture.

(E) Proposed mechanism.

(F) DFT calculations (see also Figure S3).

(G) Gram-scale reaction and de-protection.

PMP, p-methoxyphenyl.
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ee of catalyst A5, the desired product 4f was afforded with high entantioselectivity

(92% ee; Figure 4A). This unexpected chirality amplification prompted us to

examine the solubility of the catalyst. When the solution of racemic catalyst in

toluene was stirred at 60�C for 16 h, obvious precipitation was observed, whereas

the system of enantiopure catalyst remained homogeneous constantly (Figure 4B).

For racemic phosphoric acid, it is easier to form less soluble heteroaggregates

in toluene, resulting in precipitation of the racemate and enhancing the ee of

catalyst in solution.37,38 A kinetic isotope effect (KIE) experiment was performed,

with a competitive reaction between aniline and deuterated aniline (Figure 4C).

The low KIE value (kH/kD = 1.0) might suggest that the final deprotonation (or

re-aromatization) step is not rate determining (Figures S1 and S2).

As illustrated in Figure 4D, coupling of N-PMP aldimine, aniline, and N-Boc-3-azeti-

dinone resulted in two homo products (4f and 4n) and two crossover products (4fn

and 4nf) with a molar ratio of 1:1:1.5:1.5 (4fn:4f:4n:4nf). A competitive reaction be-

tween 4-methoxyaniline and aniline under standard conditions gave the same result.

These observations indicate that formation of aldimine is a reversible process and

that electron-rich aniline is beneficial to the reaction efficiency. Products 4f and

4fn were obtained in equal molar amounts, and so were products 4n and 4nf. This

shows that the enamine intermediates, generated from anilines and 3-azetidinone,

have minimal influence on the outcome.

On the basis of these preliminary results and precedents on CPA catalysis,39–46

a plausible mechanism was proposed to explain the absolute stereochemistry of

chiral fused azetidines as exemplified by formation of product 4f (Figure 4E).

Initially, in the presence of acid, benzaldehyde and azetidione easily react with

aniline to yield aldimine INT-1 and enamine INT-2, respectively. These two inter-

mediates can be simultaneously activated by CPA A5 via hydrogen-bonding

interactions. A subsequent nucleophilic attack of enamine to imine from Si-face

via a concerted or stepwise pathway results in formation of enantiopure-fused

azetidine 4f.

During exploration of the substrate scope, we found that subjecting 2-fluoroaniline

to standard conditions mainly gave rise to the Mannich adduct 4s (Figure 3). This

result demonstrates that a stepwise mechanism consisting of the Mannich and Frie-

del-Crafts cascade is presumably involved. To validate the presence of this mecha-

nism, a computational study was conducted (Figures 4F, S3, and S4). Starting from

dual activation of aldimine and enamine with CPA A5, the concerted [4 + 2] pathway

is predicted to have a free energy cost of 38.0 kcal/mol (TS10), whereas the energy

barriers for enamine-imine addition (TS1, 12.5 kcal/mol) and Friedel-Crafts attack

(TS2, 22.1 kcal/mol) are much lower. As a result, our protocol favorably proceeds

through a stepwise pathway rather than a concerted one. Friedel-Crafts attack is

likely to be a rate-determining step because its activation energy is higher than

that of the first enamine-imine addition step.
2030 Chem Catalysis 2, 2024–2033, August 18, 2022
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Scale-up synthesis and transformations

To demonstrate the practicability of this methodology, a gram-scale reaction was

performed. As shown in Figure 4G, even with as low as 1.0 mol % of catalyst A5,

the multicomponent coupling of aniline, benzaldehyde, and N-Boc-3-azetidinone

still could be successfully scaled up to 3.0 mmol, delivering the expected adduct

4f (1.15 g) with 90% yield and 96% ee with greater than 20:1 dr. The Boc-protecting

group of 4f was removed with high efficiency by a simple treatment with diluted HCl,

and no significant erosion of enantioselectivity was observed (6f).

We have developed an efficient CPA-catalyzed MCR of anilines, aldehydes, and aze-

tidinones for facile synthesis of tetrahydroquinoline-fused azetidines with three

contiguous stereocenters. In most cases, high chemo-, diastereo-, and enantioselec-

tivities were obtained. The protocol also features mild reaction conditions, good

compatibility with diverse functional groups, easy operation, and scalability.

A good outcome relies on dual activation of imine and enamine intermediates

with CPA. Application of this strategy in synthesis of biologically active molecules

is currently underway in our lab.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be directed to

and will be fulfilled by the lead contact, Q.-A.C. (qachen@dicp.ac.cn).

Materials availability

Unique and stable reagents generated in this study will be made available upon

request, but we might require a payment and/or a completed materials transfer

agreement if there is potential for commercial application.

Data and code availability

Crystallographic data for the structure of 4q have been deposited at the CCDC

(CCDC: 2026566). Copies of the data can be obtained free of charge from https://

www.ccdc.cam.ac.uk/structures/. Details about experimental procedures, mecha-

nistic studies, computational methods, characterization data of products, NMR (nu-

clear magnetic resonance) (Figures S5–S91) and HPLC (high performance liquid

chromatography) spectra (Figures S92–S167) are available in the supplemental infor-

mation. Table S1 shows B3LYP (Becke-3-parameter-Lee-Yang-Parr) geometries for

all optimized compounds and transition states. Additional data are available from

the lead contact upon reasonable request.
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