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ABSTRACT: The discovery of new chemoselectivity with readily
accessible chemicals is important to expand the reaction space for
modern chemistry. For dienes and dienophiles, most people will
naturally use them to carry out the classic Diels−Alder reaction to
construct six-membered cyclic compounds. Here, we demonstrated
a chemoselective coupling of butadiene with dienophiles through
stereoselective 1,3-cyclotelomerization. By utilizing robust Ni/IPr
catalysis, valuable bicyclic products were created with high regio-
and chemoselectivities under mild conditions. Asymmetric cyclotelomerization enabled by the chiral NHC ligand was also
performed, generating enantioenriched bicyclic compounds. The reaction mechanism was also investigated via experiments and
density functional theory (DFT) calculations, which indicate that the reaction might start with oxidative cyclometalation between
two molecules of 1,3-diene and Ni(0) species, followed by a [3 + 2]-cycloaddition between nickelacycle and dienophile. The
products can undergo a variety of intricate transformations, which emphasizes the potential applications of this strategy. It is hoped
that the discovery of this protocol will further inspire people to rethink classic organic reactions.

■ INTRODUCTION
It has always been a permanent pursuit among organic
chemists to develop efficient catalytic systems and realize
structurally diverse synthetic reactions, starting from simple
raw materials. For example, 1,3-butadiene serves as a crucial
C4 synthon in synthetic chemistry, and chemists have shown
significant interest in its selective functionalizations.1−7 The
Frontier Orbit Theory (FOT) provides an explanation for
these transformations, as they are governed by the principles of
symmetry matching and energy proximity. The interaction of
butadiene with its reaction partner (X = Y or X−Y) in 1,2- or
1,4-addition reactions is well-established, leading to cyclo-
addition and linear conjugate addition products, respectively
(Figure 1A).4,8−11 However, the potential for achieving new
transformations with unconventional selectivity (e.g., 1,3-
addition) remains less explored (Figure 1A).
Taking catalytic cycloadditions of dienes as examples,

although many elegant and divergent approaches have been
developed, their general pattern still follows the traditional 1,2
or 1,4-addition model (Figure 1B).12−15 When you have
dienophiles, most people will naturally use them to carry out
the classic Diels−Alder reaction (1,4-addition) to construct
six-membered cyclic compounds.16−20 Using ruthenium(II)
complexes as photosensitizers, the Yoon group realized a [2 +
2] cycloaddition between 2′-hydroxychalcone and conjugated
dienes via 1,2-addition in the presence of Lewis acids.21 Under
a transition metal-catalyzed system, butadiene underwent 1,4-
addition to generate eight-membered cyclic olefins.22 Con-
versely, 1,2-addition predominated under a photocatalytic
system, resulting in the formation of cyclobutane products.23

Taking advantage of the unique structure and reactivity of 1,3-
diene, its cyclotelomerization provided a nice approach to
construct more complicated molecules in one step. Through a
mixed 1,4/1,2-addition, our group successfully achieved
asymmetric heteroarylative cyclotelomerization of isoprene in
the presence of Ni catalysis.24 Using alkynes as reactants for
binary 1,4-addition, the Thomel group accomplished the
catalytic cyclotelomerization of 1,3-butadiene to afford ten-
membered cycloalkenes with the Ni/PR3 system.25 All of these
cycloadditions can make only single rings with even carbon
numbers (4, 6, 8, and 10). Exploring the feasibility of the
creation of double rings with odd carbon numbers will require
the discovery of a new reaction model.
In 1975, Hagihara et al. reported a stoichiometric cyclization

of the p-benzoquinone-palladium complex with butadiene to
give an interesting tricyclic product.26 Ten years later, Jolly and
Raspel uncovered an unusual 1,3-addition between alkyne and
ally fragments of the palladium complex to deliver cyclo-
pentene-substituted η3-allylpalladium species.27 Unfortunately,
such an important discovery has completely vanished into
historical oblivion after that and no catalytic approach has been
developed up to now. The discovery of a catalytic protocol,
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especially an asymmetric catalysis, to access these chiral
polycycles would be very valuable for revitalizing telomeriza-
tion chemistry. Based on our long-standing interest in the
functionalizations of 1,3-dienes,24,28−31 we wonder if we can
discover a new chemoselective catalytic coupling of dienes and
dienophiles by regulating the reactivity of nickelacycle (Figure
1C). We envision that oxidative cyclometalation between two
molecules of 1,3-diene and Ni(0) catalyst gives the LNi-
(C8H12) complex, which then proceeds through intermolecular
annulation with alkyne to deliver a unique chiral [5,5] bicycle.
Obviously, there are many challenges associated with this
proposal. For example, (1) the competitive coordination of the
alkyne substrate with the Ni(0) catalyst may result in alkyne
oligomerization;32 (2) the direct reductive elimination of the
LNi(C8H12) complex would give 1,3-diene dimerization
product;4 (3) how to switch the chemoselectivity from
cyclodecatriene product to the [5,5] fused ring?25,33,34 and
(4) the simultaneous control of diastereo- and enantioselec-

tivity of the obtained bicyclic product. By addressing these
challenges, we herein developed an efficient 1,3-cyclotelome-
rization of butadiene with dienophiles under nickel/NHC
catalysis with high chemo-, regio-, and enantioselectivities
(Figure 1C). It features a formal binary 1,3-addition of dienes
with high atom and step economy, providing an important
complement to known precedents for the reaction of diene
with dienophiles.

■ RESULTS AND DISCUSSION
Reaction Optimization. To verify our hypothesis, ynone

(1a) and 1,3-butadiene (2a) were initially selected as model
substrates (Table 1). In the presence of Ni(cod)2, IPr·HCl and
tBuOK in toluene at 40 °C, the reaction resulted in bicyclic
product 3a in 33% yield (entry 1). Interestingly, the reactivity
showed significant improvement when polar aprotic solvents
such as DMF or NMP were used, while the use of DCE as a

Figure 1. Catalytic telomerization of butadiene. (A) π-Molecular orbitals of 1,3-butadiene and its representative reactions. (B) Intrinsic 1,4- or 1,2-
addition tendency of dienes in telomerization. (C) This work: stereoselective 1,3-cyclotelomerization of butadiene with dienophiles under Ni
catalysis.
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solvent severely hindered the reaction (entries 1−6).
Evaluation of NHC ligands revealed that IPr·HCl exhibited a
superior performance in terms of yield (entries 6−11).
Dissociation of carbene ligands usually requires the addition
of a base, thus different bases were then examined and tBuOK
was identified as the most effective base, providing 3a with
72% yield (entry 12). It should be noted that the ynone 1a
underwent undesired self-dimerization or trimerization easily,
especially at an elevated temperature, resulting in complete
conversion of 1a. Encouragingly, the free IPr ligand can
increase the yield of 3a to 79% in the absence of an additional
base (entry 16).

Substrate Scope. With the optimized conditions in hand,
we sought to investigate the substrate scope for the 1,3-
cyclotelomerization of butadiene with ynones under Ni/NHC
catalysis (Figure 2). When unsubstituted 1a was subjected to
the standard conditions, bicyclic product 3a was obtained in an
isolated yield of 76%. Both electron-donating (3a−3c) and
electron-withdrawing substituents (3d−3g) at the para
position of the phenyl group Ar1 were well-tolerated, resulting
in products with yields ranging from 38% to 76% and excellent
diastereoselectivities. Chemically sensitive but useful groups
such as Cl and Br were also compatible. Substituents at the
meta and ortho positions of the phenyl motif (Ar1)
demonstrated good compatibility (3h and 3i). Notably,
naphthyl-, furyl-, and thienyl-substituted ynones were viable
substrates, efficiently yielding the bicyclic products (3j−3l).
Moreover, the para position of Ar2 was investigated with both
electron-donating and electron-withdrawing substituents. All
candidates smoothly reacted with butadiene, affording the
corresponding products in good yields and excellent
selectivities (3m−3s). Substituents such as F and Cl at the
meta position were compatible with the reaction, affording

products 3t and 3u in good yields, respectively. The 3-thienyl-
derived substrate was also amenable to the protocol, albeit with
a decreased yield due to the propensity of homodimerization
or trimerization (3v). To this end, substrates with steric bulk in
the phenyl group were selected. For instance, 3,5-dimethyl and
2,4,6-trimethyl phenyl groups provided the optimal balance,
yielding products in decent yields (3w−3aa, 3dd−3gg).
Additionally, 3,5-dimethoxy and 3,5-dichloro phenyl groups
were applicable, resulting in products with yields of 77% and
38%, respectively (3bb and 3cc). We speculated that the
decreased yield of 3cc could be attributed to the electron-
deficient nature of the ynone substrate, which might promote
alkyne self-oligomerization. Unfortunately, when replacing the
aryl ring with an alkyl substituent in the ynone substrates, the
reactions failed to deliver the corresponding products (for
unsuccessful substrates, see Supporting Information, page
S21). The stereo configuration of products 3e (CCDC:
2321680), 3s (CCDC: 2321686), and 3ee (CCDC: 2321773)
was further confirmed by X-ray crystallographic analysis.
To expand the application range of substrates, an

investigation into the scope of the enones was conducted
(Figure 3). Previously, we reported a hydrobivinylation
reaction between enone and 1,3-butadiene catalyzed by
Ni(0)/PCy3, which yielded a diene product.29 By modifying
the reaction conditions and replacing PCy3 with IPr, we found
that enones could also undergo cyclotelomerization with 1,3-
butadiene. The reaction for enones could be performed well
with a mixed solvent (DMF/iPrOH = 4/1). A wide range of
para-substituted phenyl enones demonstrated successful
application in this method with moderate diastereoselectivity,
irrespective of their electronic factors (5a−5g). Moreover, 3-Cl
or 2-Me on the phenyl ring of the Ar2 group proved compatible
with the current process, yielding 5h and 5i in 60% and 71%

Table 1. Optimization for 1,3-Cyclotelomerization of Butadiene with Ynonea

entry ligand base solvent 3a (%) recovery of 1a (%)

1 IPr·HCl tBuOK toluene 33 33
2 IPr·HCl tBuOK dioxane 53 14
3 IPr·HCl tBuOK DCE N.D. 87
4 IPr·HCl tBuOK tBuOH 55 N.D.
5 IPr·HCl tBuOK DMF 70 N.D.
6 IPr·HCl tBuOK NMP 72 N.D.
7 SIPr·HCl tBuOK NMP 71 N.D.
8 IMes·HCl tBuOK NMP 57 7
9 SIMes·BF4

− tBuOK NMP 29 34
10 L1 tBuOK NMP 58 8
11 L2 tBuOK NMP 50 N.D.
12 IPr·HCl tBuONa NMP 76 N.D.
13 IPr·HCl tBuOLi NMP 67 N.D.
14 IPr·HCl EtOK NMP 72 N.D.
15 IPr·HCl MeONa NMP 72 N.D.
16 IPr NMP 79 (76)b N.D.

aConditions: 1a (0.10 mmol), 2 (0.50 mmol), Ni(cod)2 (10 mol %), NHC (10 mol %), base (20 mol %), solvent (0.4 mL), 40 °C, 24 h. Yields
were determined by GC-FID analysis of crude mixture with mesitylene as the internal standard. bIsolated yield. N.D. = not detected.
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yield, respectively. Substituting the phenyl group with naphthyl
or furyl still resulted in good yields for products 5j and 5k.
However, the enone substrate bearing a hydroxyl group was

not amenable to this protocol. The 3-pyridyl-substituted enone
also only afforded diastereoisomers in 14% total yield (by 1H
NMR) with a 1.7:1 dr, accompanied by some inseparable

Figure 2. Substrate scope of ynones. Conditions: 1 (0.20 mmol), 2 (1.0 mmol), Ni(cod)2 (10 mol %), IPr (10 mol %), NMP (0.8 mL), 40 °C, 24
h. Isolated yields were given in all cases. All the dr of products were >20/1. a48 h. bNi(cod)2 (15 mol %), IPr (15 mol %).
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impurities (for unsuccessful substrates, see Supporting
Information, page S21). The stereo configuration of products
6d and 5f was further confirmed by X-ray crystallographic
analysis.
To showcase the synthetic utility of this protocol, various

transformations were performed (Figure 4). First, the product
3a underwent a Wacker-type oxidation at the terminal C=C
bond under Pd/Cu catalysis, resulting in the formation of
ketone 8 in 87% yield.35 Furthermore, the hydroboration
reaction of 3a with 9-BBN, followed by oxidation with H2O2,
smoothly provided alcohol 9 in a 61% yield. Using HG2 as the
catalyst, the olefin metathesis of 3a and phenyl acrylate yielded
compound 10 at room temperature.36 In the absence of an
external alkene, an olefin metathesis of two molecules of 3a at
70 °C provided compound 11 in 67% yield. Notably, the
nitration of 3a with tBuONO and TEMPO exhibited excellent
E-selectivity, leading to the desired product 12 in 61% yield.37

Subsequently, attention shifted toward functionalizing the
ketone moiety. The condensation of 3a with hydroxylamine
resulted in the formation of oxime 13 in 71% yield.38

Moreover, in the presence of NaBH4, a chemoselective
hydrogenation of 3a occurred, providing alcohol 14 in good
yield.39 Additionally, the ketone motif underwent nucleophilic
addition with MeMgBr, leading to the formation of tertiary
alcohol 15 in 79% yield.39 The structures of compounds 10,
11, and 12 were further confirmed through single-crystal X-ray
crystallography (CCDC: 2321775, 2321685, and 2321774,
respectively).

Substrate Scope for the Asymmetric 1,3-Cyclo-
telomerization of Butadiene with Ynones. Encouraged

by the ligand effect in the Ni-catalyzed asymmetric catalytic
reaction with NHC ligands,24,40−44 we hypothesized that an
asymmetric Ni-catalyzed 1,3-cyclotelomerization of butadiene
with dienophiles could be achieved with bulky chiral NHC
ligands. Through the optimization of the reaction conditions,
good yields with excellent enantioselectivities could be
achieved with chiral NHC L10 as the optimal ligand (Figure
5A, for details, see Tables S1−S3). The undesired self-
oligomerization of ynone easily occurred at 40 °C. Lowering
the reaction temperature to 30 °C can slow this side reaction,
resulting in an improved yield of 3dd (73% yield, 99% ee). In
addition, a linear relationship was observed by the nonlinear
effect experiment, indicating that one ligand may coordinate
with one nickel atom to form the active catalyst (Figure 5B).
This innovative protocol exhibited good compatibility with
various functional groups present in ynones (3a−3ee, Figure
5C). Ynones with electron-donating or electron-withdrawing
groups on the phenyl moiety were suitable substrates,
regardless of the position, affording the desired products
with moderate to good yields (31−86%) and excellent
enantioselectivities (93−99% ee). The reaction displayed the
same remarkable diastereoselectivities as the racemic reaction
(Figures 2 and 6). Importantly, heterocyclic ynones (3k, 3aa)
also underwent the process with high enantioselectivities.
Ynones with significant steric hindrance were particularly
favorable, providing the desired chiral bicyclic products in high
yields and enantiomeric excess (3w−3ee). The absolute
configuration of the chiral fused ring (3dd) was determined
through X-ray crystallography (CCDC: 2321630).

Figure 3. Substrate scopes of enones. Conditions: 4 (0.20 mmol), 2 (1.0 mmol), Ni(cod)2 (10 mol %), IPr (10 mol %), DMF/iPrOH (4/1, 0.5
mL), 50 °C, 24 h. Isolated yields were given in all cases. All the dr of 5 is between 3:1 and 4:1. ai-PrOH (0.5 mL), Ni(cod)2 (15 mol %), IPr (15
mol %).
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Mechanistic Investigations. To elucidate the mechanism,
kinetic experiments were conducted by using model substrates
under standard conditions (Figure 6A). Notably, we found that
the operating procedure of this cyclotelomerization had an
important impact on the reaction rate. The reaction protocol,
which involved prestirring Ni(cod)2, IPr, and 1,3-butadiene in
NMP for 15 min prior to the addition of alkyne 1a (procedure
I), was much faster than that subjecting the 1,3-butadiene and
alkyne 1a simultaneously into (IPr)Ni(cod)2 solution
(procedure II). Moreover, we also observed that this
cyclization reaction proceeded rapidly in the first 10 min
upon the addition of alkyne 1a (procedure I) and then slowed
down along with time. The reaction between alkyne 1a and

butadiene 2 with a stoichiometric amount of (IPr)Ni(cod)
proceeded very fast with procedure I (Figure 6B). Therefore,
we speculated that this cyclotelomerization reaction first went
through an oxidative cyclometalation between (IPr)Ni(0) and
two molecules of 1,3-diene to form a nickelacycle species and
then reacted with the alkyne substrate to deliver the
corresponding bicyclic product. If the 1,3-diene and alkyne
were added to the reaction system simultaneously, the
competitive coordinated ability of alkyne would impede the
formation of required nickelacycle. To further testify our
hypothesis, we synthesized the IPrNi(C8H12) complex from
IPr, Ni(cod)2 and 1,3-butadiene (Figure 6C).45 To our delight,
such nickelacycle reacted with alkyne 1a very smoothly, giving

Figure 4. Synthetic transformations. Conditions: (a) 3a (0.10 mmol), PdCl2 (15 mol %), CuCl (1.5 equiv), DMF/H2O, air, 40 °C, 60 h; (b) 3a
(0.10 mmol), 9-BBN (0.10 mmol), 0 °C-rt, 12 h, then NaOH, H2O2, rt, 3 h; (c) 3a (0.10 mmol), phenyl acrylate (0.15 mmol), HG2 (5 mol %),
DCM, 40 °C, 24 h; (d) 3a (0.10 mmol), HG2 (5 mol %), DCM, 70 °C, 48 h; (e) 3a (0.10 mmol), tBuONO (0.20 mmol), TEMPO (0.04 mmol),
dioxane, 90 °C, 12 h; (f) 3a (0.10 mmol), NH2OH·HCl (0.15 mmol), pyridine (0.25 mmol), EtOH, 60 °C, 40 h; (g) 3a (0.10 mmol), NaBH4
(0.30 mmol), MeOH, 0−40 °C, 3 h; and (h) 3a (0.20 mmol), CH3MgBr (0.60 mmol), THF, −78−60 °C, 40 h.
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Figure 5. (A) Optimization of chiral NHC ligands. Conditions: 1 (0.10 mmol), 2 (0.5 mmol), Ni(cod)2 (10 mol %), chiral NHC (10 mol %),
tBuOK (20 mol %), DMF (0.4 mL), 40 °C, 24 h. (B) Nonlinear effect study. (C) The substrate scope for enantioselective 1,3-cyclotelomerization
of butadiene with ynones. Conditions: 1 (0.20 mmol), 2 (1.0 mmol), Ni(cod)2 (10 mol %), L10 (10 mol %), tBuOK (12 mol %), DMF (0.8 mL),
30 °C, 24 h. Isolated yields were given in all cases. Enantioselectivities were determined by chiral HPLC analysis. a30 °C, tBuOK (12 mol %). b48 h.
cNi(cod)2 (15 mol %), L10 (15 mol %).
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Figure 6. Mechanistic experiments and the proposed mechanism. (A) Kinetic experiments. (B) Reaction profile with stoichiometric Ni (procedure
I). (C) Synthesis and transformation of (IPr)Ni(C8H12). (D) Control experiments. (E) DFT calculations on the proposed reaction pathways.
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desired product 3a in good yield within 1 h (Figure 6C). To
exclude other possible pathways, control experiments were
performed (Figure 6D). Under standard conditions, the
reaction of five-membered dimerized intermediate 6 and
alkyne 1a did not give any desired product 3a. Using our
previously reported hydrobivinylation protocol,29 the diene 7
was synthesized from the reaction of enone 4 with 1,3-
butadiene under Ni catalysis. However, the imaginary
intermediate 7 also could not react with 1,3-butadiene to
form desired product 5a.
To further probe the mechanism and understand the origin

of its enantio- and diastereoselectivity of this Ni-catalyzed
cyclotelomerization, density functional theory (DFT) calcu-
lations were performed on a model reaction with ynone 1a and
1,3-butadiene. When the chiral NHC ligand L10 is used,
(L10)Ni(0) can activate two molecules of 1,3-butadiene 2 by
alkene coordination, forming intermediate A_tc and its
enantiomer A_tc_ee in the s-trans, -cis conformation or
intermediate A_tt in the s-trans, -trans conformation. Followed
by the oxidative cyclometalation, bis-π-allyl nickelacycle B_tc
is generated preferably through transition state TS1_tc with a
lower free-energy barrier (10.5 kcal/mol), than transition state
TS1_tc_ee leading to the enantiomeric product 3a_ee (from
intermediate B_tc_ee, see Supporting Information for more
details). Meanwhile, calculations indicate that the formation of
B_tt has a higher free energy (16.0 kcal/mol for TS1_tt) than
that of B_tc. Then, charge-transfer (CT) complex Int C or its
diastereoisomer Int C_dr may be formed between electron-
rich nickelacycle B_tc and electron-poor ynone 1a. Although
Int C entails a higher energy barrier than Int C_dr by 5.1 kcal/
mol, the transition state TS2 forming the desirable product 3a
is much favored by exhibiting a lower free-energy barrier of
12.9 kcal/mol than TS2_dr. The latter requires a very higher
barrier (32.5 kcal/mol), thus making the diastereoselective
product 3a_dr (from intermediate D_dr) unfavorable at 40
°C. Once the intermediate D is produced, nickelacycle E can
be obtained feasibly by means of transition state TS3 (ΔG‡ =
13.1 kcal/mol). After a final reductive elimination, product 3a
is successfully furnished through TS4 (ΔG‡ = 17.3 kcal/mol).

■ CONCLUSIONS
In summary, an unconventional 1,3-cyclotelomerization
reaction of butadiene with α,β-unsaturated ketones has been
successfully developed under nickel catalysis by using the IPr
ligand. Employing the chiral NHC ligand L10, an asymmetric
cyclotelomerization system was established, enabling the
synthesis of chiral bicyclic products in good yields with
excellent enantioselectivities. Mechanistic experiments and
related DFT calculations showed that the reaction might
proceed through an oxidative cyclometalation between two
molecules of 1,3-diene and Ni(0) species first, followed by a [3
+ 2]-cycloaddition between nickelacycle and dienophile. The
synthetic utility of the bicyclic products was demonstrated
through various transformations. This protocol introduces a
new strategy for diversifying the telomerization of butadiene.
Ongoing research in our laboratory focuses on further studying
and applying the nickel-catalyzed asymmetric 1,3-cyclotelome-
rization reaction with chiral NHC ligands.
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