
Traceless Aminoalkyl Radical-Induced Halogen-Atom Transfer for
Minisci Reactions
Jin-Song Huang, Zhi-Hui Wang, Xue-Ting Li, Shi-Yu Guo,* Xu-Liang Jiang,* and Qing-An Chen*

Cite This: https://doi.org/10.1021/acs.orglett.5c01794 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Halogen-atom transfer (XAT) provides a viable
strategy to convert alkyl halides into the corresponding carbon
radicals, but the usage of equivalent XAT reagents and excess
oxidants is usually inevitable. Herein, we present a traceless
aminoalkyl radical-induced XAT process for the Minisci reaction,
especially without the participation of excess XAT reagents under
redox-neutral conditions. Mechanistic experiments indicated that
the formation of comparable aminoalkyl radicals occurred through
the single-electron transfer reduction of protonated heteroaro-
matics, differing from the conventional oxidation process of amines
used to generate α-aminoalkyl radicals.

Due to their wide availability, alkyl halides represent a
versatile class of organic compounds with broad

applications in organic synthesis.1 Traditionally, alkyl halides
have been recognized as important electrophiles (E+) owing to
the partial positive charge on the carbon atom bonded to the
halogen (a result of the halogen’s high electronegativity).2

Taking advantage of the good leaving ability of halogen, alkyl
halides undergo substitution reactions with a variety of
nucleophiles (Nu−), including water, alcohols, amines, and
other anions, through two primary mechanisms: SN1 and SN2.
In contrast, it is hard to couple alkyl halides with other
electrophiles under redox-neutral conditions. For example, the
use of stoichiometric amounts of reductant is usually required
for its coupling with aryl halides,3 protonated heteroaro-
matics,4 etc. Therefore, it is of great importance to develop a
radical approach to realize the coupling of alkyl halides with
electrophiles under redox-neutral conditions (Figure 1a).

Halogen-atom transfer (XAT) has emerged as one of the
most important approaches to generate carbon radicals from
organic halides in synthetic chemistry.1a,5 In general, organic
tin,6 silyl,7 boryl,8 and phosphorus9 species have shown good
activities in generating the open-shell intermediate by
homolytic C−X bond cleavage via XAT under thermal or
light irradiation conditions. However, the toxicity, availability
issues, or cost concerns associated with these XAT reagents
have somewhat impeded further advances in this field. In
recent years, visible light photocatalysis represents the state-of-
the-art technique to promote various radical reactions10 and
has enhanced the chemists’ ability in generating carbon radicals
from unactivated alkyl halides. Based on the previous works of
Laleveé et al.,11 Doyle et al.,12 and Leonori et al.,13 it has been
demonstrated that α-aminoalkyl radicals could promote the

homolytic activation of the C−X bond under photoredox
catalysis, where aliphatic amines go through oxidation via
single-electron transfer (SET) followed by deprotonation to
furnish the key α-aminoalkyl radical. They have been widely
used in dehalogenation,13a,14 Giese reaction,15 Heck-type
olefination,13a and aromatic C−H alkylation13a protocols.
Although commercially available amines could be used directly
for the generation of α-aminoalkyl radicals, stoichiometric
amounts of XAT reagent amines are still required as a
reductant or abstractor in those XAT processes (Figure 1b).
Therefore, it is still a great challenge to develop a strategy to
activate alkyl halides for the generation of carbon radicals using
a catalytic amount XAT reagent.16

Minisci C−H alkylation is widely used to introduce alkyl
groups into heteroaromatics with utilization of diverse alkyl
radical precursors,17 such as aliphatic carboxylic acids,18 amino
acids,19 primary alcohols,20 boronic acids,21 and alkyltrifluor-
oborates.22 Unactivated alkyl halides are difficult to be directly
reduced through the SET process owing to their highly
negative reduction potentials (E1/2

red < − 2.0 V vs SCE).15d

With the assistance of the XAT strategy, the Minisci reaction
using alkyl halides as a carbon radical source could effectively
proceed.4a,17c,23 This process necessitates not only an
equivalent amount of XAT reagents but also results in redox
imbalance (Figure 1c).4 Up to now, there is no report on

Received: May 12, 2025
Revised: May 27, 2025
Accepted: May 30, 2025

Letterpubs.acs.org/OrgLett

© XXXX American Chemical Society
A

https://doi.org/10.1021/acs.orglett.5c01794
Org. Lett. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

D
A

L
IA

N
 I

N
ST

 O
F 

C
H

E
M

IC
A

L
 P

H
Y

SI
C

S 
on

 J
un

e 
5,

 2
02

5 
at

 0
6:

19
:2

7 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jin-Song+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhi-Hui+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xue-Ting+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shi-Yu+Guo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xu-Liang+Jiang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qing-An+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.5c01794&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01794?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01794?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01794?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01794?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.5c01794?fig=tgr1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.orglett.5c01794?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf


visible-light-induced Minisci alkylation between unactivated
alkyl bromides and azaarenes via the XAT process just using a
catalytic amount of XAT agents under redox-neutral
conditions.

Intrigued by these precedents and our previous work,24 we
posed the question whether the radical generated from SET
reduction of protonated N-heteroarene could serve as an α-
aminoalkyl radical to promote the XAT process. Herein, this
hypothesis has been validated by traceless aminoalkyl radical-
induced C−H alkylation of N-heteroarenes with unactivated
alkyl halides under photocatalysis (Figure 1d). Remarkably, the
developed XAT-driven Minisci reaction could proceed
smoothly in the absence of extra halogen abstractors under
mild and redox-neutral conditions.

As a model reaction, the alkylation of 4-methylquinoline 1a
with N-Boc-4-bromopiperidine 2a was investigated under
various conditions (Table 1 and section 2 of the Supporting
Information for details). Pleasingly, the desired product 3aa
could be obtained in 75% yield under the optimized conditions
(Table 1, entry 1). In the absence of either irradiation or
photocatalyst Ir(dtbbpy)(ppy)2PF6, control experiments re-
sulted in quantitative recovery of 4-methylquinoline 1a (entries
2 and 3). No desired product 3aa was observed under thermal
conditions or an air atmosphere (entries 4 and 5). The
utilization of fluoroalcohol solvents was found crucial for
promoting the reaction, and trifluoroethanol (TFE) exhibited

better results than hexafluoroisopropanol (HFIP) (entry 6).
However, methanol exhibited poor efficiency in promoting the
reaction (entry 7). Other aprotic solvents, such as acetonitrile
(MeCN), dichloromethane (DCM), and dimethyl sulfoxide
(DMSO), were all found to be ineffective (entries 8). The
plausible rationale is that fluoroalcohol, as highly polar solvent,
can activate N-heteroarenes via hydrogen bonding, stabilize
radical intermediates, and thereby facilitate the reaction
progression.25 Additionally, Ir(dtbbpy)(ppy)2PF6 was found
to be the best photocatalyst for this transformation, while other
photocatalysts exhibited no catalytic ability (entry 9). It is
noteworthy that this protocol was highly efficient, requiring
only 1.2 equiv of alkyl bromides to give corresponding
products with a high yield (entry 10 vs 1). Unexpectedly, a
similar reactivity was observed without the addition of external
acid, which was usually indispensable for the Minisci reaction
(entry 11 vs 1). The investigation of alkylation with cyclohexyl
bromide 2e in the absence of an additional acid was
conducted. The alkylation of 4-methylquinoline 1a with
cyclohexyl bromide 2e could afford the desired product 3ae
with 75% yield in an acid-free system (entry 12). Notably,
when the reaction of cyclohexyl bromide 2e was performed in
the mixture solvent TFE/H2O (9:1), the yield of the desired
product 3ae increased to 94% (entry 13).

With the optimized conditions in hand, the scope of
unactivated alkyl halides was explored (Figure 2). It was found
that a series of secondary and primary alkyl halides were
proven to be feasible, affording C−H alkylation products in
moderate to good yields. Cyclic alkyl halides, comprising

Figure 1. Carbon radicals generated from alkyl halides via XAT.

Table 1. Optimization of Reaction Conditionsa

entry
alkyl

halides variation from standard conditions
yield of 3aa or

3ae (%)

1 2a none 75 (72)
2 2a without PC 0
3 2a in dark conditions 0
4 2a air instead of N2 0
5 2a oil bath at 80 °C in the dark 0
6 2a HFIP instead of TFE 59
7 2a MeOH instead of TFE 10
8 2a MeCN, DCM, and DMSO instead of

TFE
0

9 2a PC-1 and PC-2 instead of Ir(dtbbpy)
(ppy)2PF6

0

10 2a using 2.5 equiv of 2a 70
11 2a without HCO2H 71
12 2e without HCO2H 75b

13 2e TFE/H2O (9:1, v/v), without acid 94b (89)
aConditions: compound 1a (0.20 mmol), compound 2 (0.24 mmol),
Ir(dtbbpy)(ppy)2PF6 (1.0 mol %), HCO2H (0.20 mmol), TFE (2.5
mL), blue light-emitting diodes (LEDs, λmax = 456 nm, 50 W), N2
atmosphere, room temperature, and 24 h. Yields were determined by
1H NMR analysis of the crude reaction mixture using 1,3,5-
trimethoxybenzene as the internal standard. Isolated yields were
given in parentheses. bYields were determined by gas chromatography
with flame ionization detection (GC−FID) analysis of the crude
reaction mixture using 1,3,5-trimethoxybenzene as the internal
standard. PC-1, Ru(bpy)3(PF6)2; PC-2, (Mes-Arc)ClO4.
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heterocycles (3aa−3ac) and single (3ad−3af) and fused (3ag
and 3ah) carbocycles, proceeded smoothly. Notably, secon-
dary alkyl halides could still achieve excellent yields even
without additional acid (3aa, 3ab, 3ae, 3af, 3ai, and 3aj),
which is difficult to achieve in traditional Minisci protocols.
Ring-strained and sterically bulky alkyl halides were also
compatible in this protocol but with lower yields (3ac and
3ag). Besides, the reaction still worked well when some of the
alkyl bromides were replaced with corresponding alkyl iodides
(3aa, 3ab, 3ae, 3ai, 3ak, and 3al). For primary alkyl halides, a
variety of common functionalities, such as alkyl (3ak), phenyl
(3al), alkenyl (3am), chlorine (3aq), ether (3ap), ester (3ar
and 3as), and acetal (3at), were also well-tolerated to afford
the desired alkylated products. Alkyl groups containing acid-
labile substituents could be successfully introduced onto N-
heteroarenes, reflecting the mildness of the protocol. Although
alkyl chlorides were not active owing to the high bond energy
of the C−Cl bond, this protocol displayed good selectivity on
the activation between C−Br and C−Cl bonds (3aq).

Next, further exploration of the N-heteroarene scope,
involving quinolines, isoquinolines, and phenanthridine, was
conducted (Figure 3). This C−H alkylation was found to be
amenable to a wide range of quinolines bearing electron-
donating groups (EDGs), such as methyl, isopropyl, cyclo-
hexyl, and methoxy groups, at either the C-2 or C-4 position
(3ba−3ea). Unsubstituted quinoline showed a slight prefer-

ence on its C-4 position (3fa). The introduction of electron-
withdrawing groups (EWGs) onto quinolines decreased the
reactivities (3ga and 3ha). Reactions of 2,6-dimethyl- and 4-
methyl-6-methoxy-quinolines delivered corresponding prod-
ucts in 82 and 47% yields, respectively (3ia and 3ja).
Furthermore, phenanthridine could also be tolerated to
incorporate an alkyl group into its C-6 position (3ka). For
isoquinolines, good regioselectivities were observed to deliver
the desired products with C-1 alkylation (3ma and 3na).
Other N-heteroarenes, like pyridines, were also explored, but
the yields were not satisfactory (section 3 of the Supporting
Information for details).

To elucidate the mechanism, a series of control experiments
were carried out. When 6-bromohex-1-ene 2u and
(bromomethyl)cyclopropane 2v were employed as substrates,
ring-closed cyclization product 3au and ring-opened linear
product 3av were observed without the formation of products
3au′ and 3av′ (Supplementary Figure 5).4a Alcohols could be
used for alkylation of heteroarenes though hydrogen-atom
transfer (HAT) followed by spin-center shift (SCS) dehy-
dration.20a The hydroxyl group and halogen are both EWGs,
and the alkyl halide may also undergo a similar process to
generate the α-haloalkyl radical. However, radical clock
experiments indicate that products 3au and 3av are probably
not generated through α-haloalkyl radical A, ruling out the
HAT and SCS pathway (section 6.8.2 of the Supporting
Information for details). In addition, Katritzky salts26 and N-
benzylpyridinium salts27 were proven to be good alkyl radical
precursors, raising the possibility that the alkyl halides undergo

Figure 2. Substrate scope of alkyl halides. aConditions A: compound
1a (0.20 mmol), compound 2 (0.24 mmol), Ir(dtbbpy)(ppy)2PF6
(1.0 mol %), HCO2H (0.20 mmol), TFE (2.5 mL), blue LEDs (λmax
= 456 nm, 50 W), N2 atmosphere, room temperature, and 24 h.
bConditions B: without HCO2H, TFE/H2O (9:1, v/v) was used
instead of TFE. Isolated yields were given.

Figure 3. Substrate scope of N-heteroarenes. Conditions: compound
1 (0.20 mmol), compound 2a (0.24 mmol), Ir(dtbbpy)(ppy)2PF6
(1.0 mol %), HCO2H (0.20 mmol), TFE (2.5 mL), blue LEDs (λmax
= 456 nm, 50 W), N2 atmosphere, room temperature, and 24 h.
Isolated yields were given.
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nucleophilic substitution with N-heteroarene to generate
corresponding salt following carbon radicals. In fact, no
corresponding product was observed when N-alkyl quinoli-
nium iodide 4ai′ was subjected to the standard conditions,
ruling out the possibility of in situ generation of N-alkyl
quinolinium salts (Supplementary Figure 18). This reaction
was completely inhibited when radical scavenger 2,2,6,6-
tetramethyl-1-piperidinyloxy (TEMPO) was added, and cyclo-
hexyl-TEMPO adduct 5 was detected by high-resolution mass
spectrometry (HRMS) (Supplementary Figure 3). These
results indicate the generation of carbon radicals solely from
the cleavage of the C−X bond of alkyl halides. Then, light on−
off experiments showed that this transformation proceeded
only under constant light irradiation, which might exclude the
radical chain process (Supplementary Figure 7). In order to
deeply understand the mechanism, fluorescence quenching
experiments and Stern−Volmer analysis were conducted. The
results showed that only the combination of quinoline and acid
could quench excited-state Ir(dtbbpy)(ppy)2PF6 (Supplemen-
tary Figure 12). The cyclic voltammetry (CV) measurement of
4-methylquinoline 1a showed that the addition of acid could
raise the redox potential E1/2

red (Supplementary Figure 15),
which made quinoline more susceptible to be reduced. The
experimental *E1/2

ox of Ir(dtbbpy)(ppy)2PF6 in TFE was
measured as *E1/2

ox = −1.54 V (vs SCE).24a These results
suggest that protonated quinoline 1 (E1/2

red = − 1.22 V vs SCE
in TFE) could be reduced by the excited state of photocatalyst
Ir(dtbbpy)(ppy)2PF6 via the SET process. This transformation
was proven to result in acid production (section 6.3 of the
Supporting Information).

Based on the results above, the mechanism merging
oxidative quenching and the XAT cycle was proposed in
Figure 4. When the mixture of 4-methylquinoline 1a and alkyl

bromides 2 was taken as an example, initially, the excited
photocatalyst *IrIII is quenched by protonated quinoline B to
generate oxidized photocatalyst species IrIV and the radical
intermediate C.28 Then, the XAT process proceeds between
intermediate C and alkyl bromide 2 to give a carbon radical D
and a bromine anion afterward. The radical C is considered to
have the XAT reactivity similar to α-aminoalkyl radicals
generated from aliphatic amine.24a,c Then, the obtained carbon
radical D undergoes nucleophilic addition onto protonated N-
heteroarene 1a′ to generate radical cation E. Finally, oxidation
of radical cation E by IrIV and then deprotonation gave rise to
target protonated Minisci alkylation product 3′ and regen-

erated photocatalyst IrIII. Hydrohalic acid is the only byproduct
of this protocol, which could also activate the N-hetero-
aromatics.

In summary, we have developed a novel photoredox Minisci
reaction through a XAT process realized by traceless
aminoalkyl radicals in situ generated from the reduction of
N-heteroarenes, especially under redox-neutral and mild
conditions.29 In this protocol, a variety of unactivated alkyl
bromides and iodides could be conveniently converted into the
corresponding carbon radicals to couple with N-heteroarenes.
This protocol could proceed without the addition of
traditionally indispensable XAT reagents and oxidant. Mech-
anistic studies supported the hypothesis that the cyclic
aminoalkyl radicals generated from SET reduction of
protonated N-heteroarenes could induce the XAT catalytic
cycle. Such an unprecedented photocatalytic mode for the
XAT-induced Minisci reaction contributes to a redox-neutral
strategy for coupling of two electrophilic molecules.
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