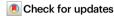
nature communications

Article


https://doi.org/10.1038/s41467-025-64893-y

Nickel-catalyzed arylative telomerization of isoprene

Received: 3 December 2024

Accepted: 30 September 2025

Published online: 12 November 2025

Xiao-Yu Wang^{1,2}, Bing-Zhi Chen¹, Su-Yang Xu^{1,2}, Xue-Ting Li^{1,2}, Yan Liu^{1,2}, Ding-Wei Ji¹ & Qing-An Chen ® ^{1,2} ⊠

Developing new transformations of bulky chemicals is an important approach to expand the reaction boundary of current chemistry. Instead of traditional hydroarylation of dienes, we herein demonstrate a nickel-catalyzed arylative telomerization of isoprene with high chemo- and regioselectivities. By utilizing a bulky mono-phosphine ligand, a range of structurally diverse aryl substituted terpenes are created efficiently under redox-neutral conditions. Preliminary mechanistic studies suggest this telomerization proceeds through an oxidative cyclometallation of isoprene with Ni(0) species followed by arylation with organoboron reagents. Beyond enabling efficient isoprene transformation, this work also provides a supplementary approach for the monoterpenoids synthesis.

In the traditional functionalization of alkenes¹⁻³, one alkene could react with functionalized reagents to form the desired functionalization product (Fig. 1a). Sometimes, undesired coupling products from two functionalized reagents were also observed. Taking advantage of different properties of alkenes and functional reagents (R¹-X and R²-Y), the selective formations of functionalization product of alkenes over undesired side product have been well developed in the presence of catalyst. In the contrast, a telomerization that functional reagents react with the two or more molecules of alkene could create more complicated molecules (Fig. 1a). However, due to the intrinsic chemoselectivity challenge, controllable telomerization for the formation of specific telomer has been less developed^{4,5}.

Hydroarylation of olefins⁶⁻⁸, the installation of a hydrogen atom and an aryl group onto alkenes, offers a straightforward method to construct C(sp²)-C(sp³) bonds. In 2018, Zhou and co-workers reported the hydroarylation of alkenes under redox-neutral conditions^{9,10}, which enabled the generation of active catalyst species Ni-H by the reaction of methanol and Ni(0). After that, various nickel-catalyzed hydroarylations of alkenes or 1,3-dienes with arylboron reagents have been developed by Mei¹¹, Zhao¹², Zhu¹³, Meek¹⁴, Wang¹⁵, and Engle et al.^{16,17}. Wang¹⁸ and Lundgren¹⁹ et al. switched the commonly observed 4,3-hydroarylation of 1,3-dienes to 1,4-hydroarylation with thermodynamically less stable *Z*-stereoselectivity (Fig. 1b). However, these systems always provided hydroarylation products. Arylative telomerization of alkenes,

especially unsymmetric 1,3-dienes, is highly appealing but is still in its infancy.

As an easily available bulk chemical, isoprene is an attractive precursor for the synthesis of terpenes and terpenoids²⁰⁻²². Keim, Hidai, Beller, Finn, Réau, Navarro, and Carbó et al.²³⁻³¹. developed acyclic telomerizations of isoprene with strong nucleophiles. Our group also presented geranylation of oxindole³². However, achieving non-nucleophilic telomerization poses a significant challenge. Recently, Leyva-Pérez et al.³³ reported Pd-catalyzed telomerization reaction of dienes with aryl boronic derivatives, giving aryl-substituted 1,6- and 1,7-dienes. Nevertheless, the method lacked control over regioselectivity, leading to the production of regioisomer mixtures. Compared with Pd^{5,23-35}, the utilization of Ni catalyst in diene telomerization is relatively uncommon, despite its cost-effectiveness³⁶⁻⁴⁰. In 1976, Klein et al. reported Ni-catalyzed telomerization of isoprene with methacrylic ester³⁶. In 1988, Hoberg et al. developed a nickel(0)catalyzed telomerization of butadiene and CO₂^{38,39}. In 2022, our group presented Ni-catalyzed asymmetric heteroarylative cyclotelomerization of isoprene⁴⁰. Encouraged by hydroarylation of 1,3-dienes and our biomimetic transformations of isoprene^{41–46}, we imagined developing an arylative telomerization of isoprene using arylboron reagents. To realize this proposal, we had to address the following challenges: First, the direct hydroarylation of isoprene with organoboron compounds is relatively easier than telomerization. Second, isoprene is an unsymmetric diene for regioselective functionalization, the telomerization

¹Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People's Republic of China. ²University of Chinese Academy of Sciences, Beijing, People's Republic of China. — e-mail: gachen@dicp.ac.cn

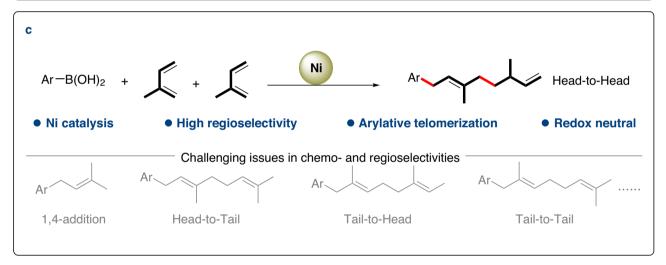


Fig. 1 | Transition-metal-catalyzed arylative telomerization of isoprene. a General functionalizations of alkenes and telomerization. b Ni-catalyzed arylation of alkenes and dienes with organoboron compounds. c This work: Ni(0)-catalyzed arylative telomerization of isoprene.

can theoretically generate up to >150 isomers³². Thus, the arylative telomerization of isoprene with high chemo- and regioselectivity is a daunting task.

By addressing those challenges, we herein show an efficient Nicatalyzed arylative telomerization of isoprene (Fig. 1c). The protocol generates a series of linear monoterpene derivatives with up to 99% yield and >20:1 regioselectivities. It also provides an efficient strategy for expanding the chemical space of monoterpenoids by creating an unnatural structure.

Results

Reaction optimization

Initially, phenylboronic acid **1a** was chosen as model substrate for the investigation of arylative telomerization of isoprene **2a** (Table 1). Promising but low chemo- and regioselective hydroarylation (**3a** and **4a**) and arylative telomerization (**5a–8a**) of isoprene were observed with the use of Ni(COD)₂, PPh₃, DABCO, and ⁱPrOH (entry 1). The

subsequent evaluation on the substituent effect on PPh3 suggested that bulkier and electron richer ligand facilitated the formation of arylative telomerization products 5a and 6a with high yields and decent regioselectivities (entries 2-5). The dimethoxy substituted mono-phosphine ligand **L5** gave the telomerization product **5a** in 85% yield and **6a** in 4% yield (entry 6). Then 2,6-(OEt)₂ and 2,6-(OⁱPr)₂ substituted triaryl phosphines L6 and L7 that were more steric hindrance and electron-richer than L5 were designed and synthesized. To our delight, the head-to-head configuration product 5a was obtained in 96% yield, accompanied by small amount of tail-to-head isomer 6a using L6 as the ligand (entry 7). When using L7, arylative telomerization of isoprene also be promoted with good yield but lower regioselectivity (entry 8). PCy3 also gave 5a in 80% yield, although the regioselectivity is slightly reduced (entry 9). The yield of 5a was significantly decreased when using X-Phos (entry 10). Monophosphines bearing bulky alkyl groups in the ortho position of phenyl like L8 and L9, gave no good results (entries 11-12).

Table 1 | Optimization of reaction conditions^a

		—B(OH) ₂	Ni Cat.	Sa S		5a, H-H		7a, H-T	
			ť	49		6a, <i>T-H</i>		8a, T-T	
		(R = 4-CF ₃	(MeO 3 OMe	OMe 3	OEt OEt	O Pr O O Pr	3	33 33 B	
		L2 : R = 4-0Me L3 : R = 2-0Me	4	L5	9T	L7	L8	F3	
Entry	Ligand	Solvent		3a (%)	4a (%)	5	5a (%)	6a (%)	7a + 8a (%)
1	PPh_3	1,4-Dioxane		7	1	13	3	16	18
2	П	1,4-Dioxane		14	3	0		0	19
3	77	1,4-Dioxane		7	1	16		14	12
4	F1	1,4-Dioxane		0	0	78	3	13	9
5	14	1,4-Dioxane		0	0	06	0	7	1
9	57	1,4-Dioxane		0	0	85	5	4	0
7	97	1,4-Dioxane		0	0	96	9	4	0
8	[7]	1,4-Dioxane		0	0	86	9	10	3
6	PCy ₃	1,4-Dioxane		2	0	80	0	7	0
10	X-Phos	1,4-Dioxane		33	8	20	C	13	4
11	87	1,4-Dioxane		7	2	8		10	4
12	61	1,4-Dioxane		0	0	0		0	0
13 ^b	97	1,4-Dioxane		16	4	42	2	1	0
14°	97	1,4-Dioxane		6	3	9/	3	2	0
15	97	THF	_	7	2	89	3	2	0
16	97	,PrOH		11	4	51	1	1	0
17	97	МеОН	7	43	3	0		0	0

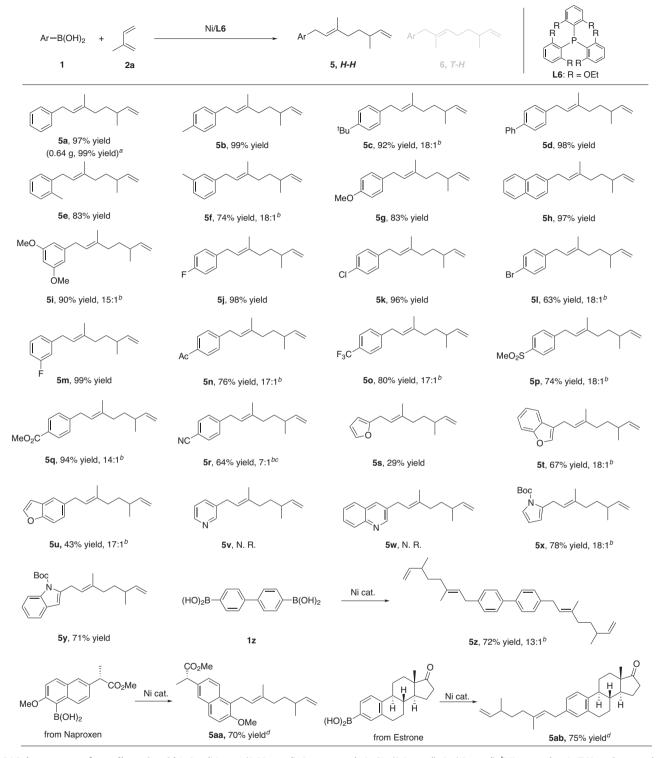
The promoting effect of other strong or hindered base like DBU, BuONa, MeONa, NEt3, and DIPEA is not as good as DABCO (entry 13 and Supplementary Table 3). When the amount of isoprene was reduced to 2 equiv., the telomerization product 5a was generated with 76% yield and accompanied by a small amount of hydroarylation products 3a and 4a (entry 14). Ni(II) precursor was not suitable for this telomerization (Supplementary Table 1, entries 2-6). Increasing the reaction temperature or changing the concentration had adverse effects on the reaction (Supplementary Table 1, entries 9-12). Lower selectivities and yields on the formation of 5a were observed when the solvent was changed from 1,4-dioxane to THF or Proh (entries 15–16 vs entry 7). No telomerization was observed when the solvent was changed to MeOH (entry 17). Using nonpolar solvent Toluene and ⁿHexane, the yield of **5a** significantly decreased and hydroarylation was observed (Supplementary Table 1, entries 13-14). Increasing the amount of ligand to 10 mol% led to the decrease of yield and regioselectivities (Supplementary Table 2, entries 1-8). When compared with Pd³³, the use of a Ni catalyst in the arylative telomerization of isoprene offers a more cost-effective and milder approach, featuring high chemo- and regioselectivities. Even though it requires five times the amount of Ni compared to Pd (with Pd being used at 1 mol%), when 2.5 mol% of Ni(COD)₂/L6 were employed, the yield of 5a could still reach 71% (Supplementary Table 1, entry 7).

Substrate scope

With the optimized conditions in hand, the generality of arylboronic acids was subsequently tested (Fig. 2). The phenylboronic acid 1a was converted to the desired product **5a** in 97% isolated yield and >20:1 rr. The stereo configuration of product 5a was determined as single E-type via two-dimensional nuclear magnetic resonance (NOESY) spectroscopy (Please see Supplementary Information, Page S42). Similarly, phenylboronic acids with different substituents (-Me, -'Bu or -Ph) in the para position (**5b-5d**), could all be well adapted to the reaction process with high yields (92–99%) and good regioselectivities (18:1 to >20:1). It should be highlighted that *o*-methyl phenylboronic acid with large steric hindrance also worked smoothly under the standard conditions, giving the desired product **5e** in 83% yield. In addition, 3-Me substituted phenylboronic acid showed good performance on both reactivity and selectivity (5f). It was showed that the phenylboronic acids with -OMe group offered the products in high yields (5g, 5i), although the latter was accompanied by a small amount of *T-H* isomer. The arylboronic acid with naphthyl instead of phenyl also reacted smoothly in excellent yield (97%) under the current condition (5h). It was worth noting that -F, -Cl, and -Br group on the phenyl ring were all well tolerated to generate the corresponding telomerization products with 63-99% yields and high regioselectivities (5j-5m, 18:1 to >20:1). Electron-withdrawing groups (-Ac, -CF₃, -SO₂Me, and -CO₂Me) substituted phenylboronic acids were suitable substrates as well (5n-5q). The cyano group (5r) was also compatible with the process to provide the corresponding product in moderated yield (64%) and 7:1 rr, although that was accompanied by 1,4-addition product with 31% yield. It is speculated that the inability of 4-nitrophenylboronic acid to telomers may have been caused by its weak oxidizing properties.

Under optimized conditions, a variety of heteroaryl boron acids reacted efficiently. Furyl and benzofurylboronic acids were suitable substrates to generate the corresponding telomerization products with 29–67% yield and high regioselectivities (**5s, 5t-5u**, 17:1 to >20:1). Unfortunately, the 3-pridyl and 3-quinoline boronic acids were not suitable substrates (**5v-5w**). It may be due to the strong coordination of the nitrogen lead to the deactivation of the Ni catalyst. In light of this, we tried to use *N*-Boc-2-pyrrole- and *N*-Boc-2-indole-6-boronic acids as substrates (**5x, 5y**), the telomerization products were obtained with high yields (71-78%) and regioselectivities (18:1 to >20:1). Interestingly, the coupling of 4,4'-biphenyldiboronic acid (**1z**) with isoprene could

incorporate two C10 blocks simultaneously to give product (5z) with 72% yield and 13:1 *rr*. To demonstrate the generality and potential utilization of this method in drug discovery, the telomerization of drug-like molecules was subsequently performed. The arylboronic acids from Naproxen and Estrone reacted with isoprene smoothly and gave the desired telomerized products in good yields (Fig. 2, 5aa and 5ab).

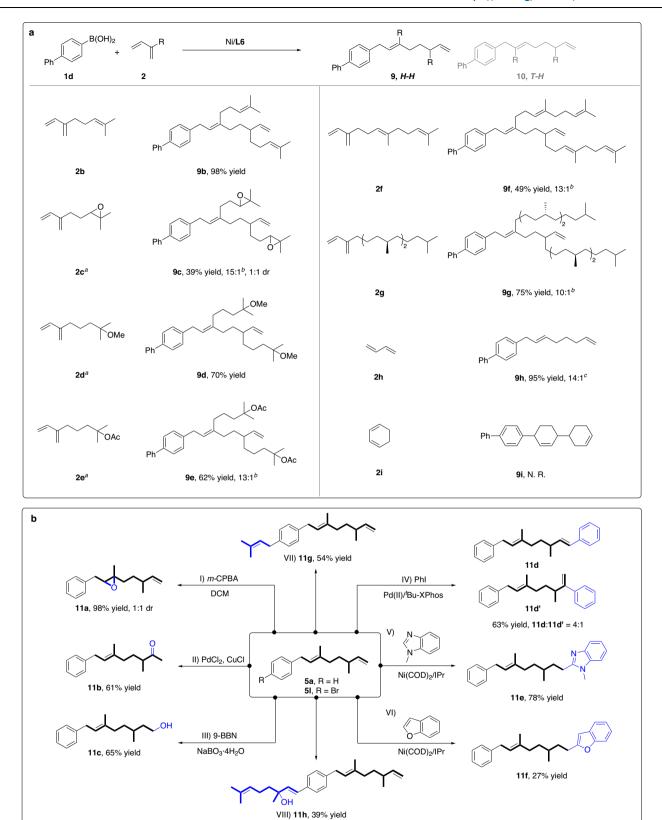

The substrate scope regarding terpenes was further explored with 1d as model substrate (Fig. 3a). Monoterpenes, such as myrcene (2b), proceeded smoothly to deliver the telomer product 9b with 98% yield and >20:1 rr. The derivatives of myrcene (2c-2e), substituted by -epoxy, -methoxy, and -acetoxy groups, could also be tolerated with 39–70% yields and good regioselectivities. Sesquiterpene β -farnesene 2f reacted with 4-biphenylboronic acid 1d smoothly, resulting in 9f at 49% yield and 13:1 rr. Phytadiene (2g), derived from chlorophyll, was a suitable coupling partner and the expected product 9g was formed with 75% yield and 10:1 rr. Not only isoprene-like dienes, but also butadiene was applicable in this protocol, giving the aryl-substituted 1,6-dienes (9h) with 95% yield. However, the 1,3-cyclohexadiene was found to be an unsuitable substrate. In addition to arylboronic acids. arylboroxines, arylboronic esters, and boranes could also be used as arylation reagent in this Ni-catalyzed arylative telomerization (Please see Supplementary Information for details, Supplementary Fig. 1).

The telomerization products of isoprene could be used as key building blocks in the synthesis of a series of terpenoids (Fig. 3b). Epoxidation of **5a** by *m*-CPBA occurred exclusively at the internal C = C bond and delivered epoxide 11a in 98% yield (1:1 dr). A Wacker-type oxidation of **5a** under Pd/Cu catalysis took place at the terminal C = C bond and produced ketone 11b in 61% yield. After hydroboration with 9-BBN, a further oxidation by NaBO₃·4H₂O could proceed smoothly to furnish alcohol 11c in 65% yield. On the other hand, diaryl products 11d and 11d' could also be accessed from 5a through Heck reaction with PhI in the presence of Pd catalysis (63% yield, 4:1 rr). Furthermore, with the help of Ni(0) and NHC (IPr) ligand, heteroaromatic rings such as Nmethyl benzimidazole and benzofuran could also be introduced onto monoterpenoids 5a, respectively (11e, 11f). Using prenyl borates as C5 block, a Pd-catalyzed Suzuki reaction underwent smoothly to deliver sesquiterpene derivative 11g in 54% yield. Besides, diterpene compound 11h could be obtained by a Pd-catalyzed Heck coupling reaction from 51 with linalool.

Mechanistic investigations

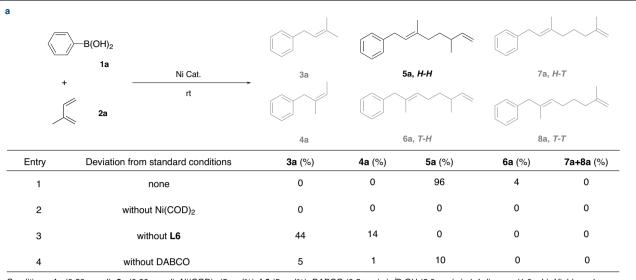
Corresponding control experiments were carried out to shed light on mechanistic insight (Fig. 4a). No conversion was observed in the absence of Ni(COD)₂, indicating its indispensable role (entry 2). Only hydroarylation of isoprene was formed without **L6** (Fig. 4a, entry 3). This result supports that large hindered mono-phosphine ligand's ability to effectively promote the arylative telomerization of isoprene. Notably, desired telomerization product **5a** was generated in only 10% yield in the absence of DABCO. This result showed DABCO was an important additive to facilitate the reaction (Fig. 4a, entry 4). The yield of **5a** was decreased to 88% in the absence of isopropanol, indicating its slight promoting effect on the telomerization. When isopropanol was replaced by MeOH, EtOH, or H₂O, the yield of **5a** was reduced and hydroarylation products increased obviously (Supplementary Table 4).

In order to detect potential intermediates for this reaction, the linear dimerization of isoprene was examined. The dimer **12** or **13** from isoprene were not observed under standard condition without boronic acid according to ¹H NMR analysis (Please see Supplementary Information for details, Supplementary Fig. 7). Then, the mixture of dimer **12** and **13** (**12:13** = 7:1) was synthesized according to the reported method (Please see Supplementary Information for details, Supplementary Fig. 6)⁴⁷. When the dimers (**12** and **13**) instead of **2a** was added into the reaction, it failed to generate the desired product (Fig. 4b).


Fig. 2 | **Substrate scope for arylboronic acid 1.** Conditions: **1** (0.20 mmol), **2a** (0.80 mmol), Ni(COD)₂ (5 mol%), **L6** (5 mol%), DABCO (0.5 equiv.), i PrOH (2.0 equiv.), 1,4-dioxane (1.0 mL), rt, 18 h. Selectivities were determined by i H NMR

analysis. "1a (3.0 mmol), 2a (12 mmol). 'Minor product is T-H product, combined yield of 5 and 6 was given. 'Yield was determined by ¹H NMR analysis, combined yield of 5r and 6r was given. '1 (0.10 mmol), 2a (0.40 mmol).

These results indicate that no linear dimerization intermediates were formed in this arylative telomerization.


No Ni-H species was observed by 1 H NMR at 0 $^{\circ}$ C (Please see Supplementary Information, Supplementary Figs. 20 and 21). Using i PrOD(d_8) (2 eq.) instead of i PrOH, deuterium-labeled experiments showed that 56% of deuterium was observed on tertiary carbon of the obtained product **5a-d** (Fig. 4c). The result can be interpreted as a

hydrogen-deuterium exchange occurring between the 'PrOD and PhB(OH)₂. But when boroxin **1a'** and D₂O (2 eq.) were added instead of boronic acid and 'PrOH into the reaction, the target product **5a-d** was yielded with 95% of deuterium on the tertiary carbon. These results suggest a protonation from H₂O which was generated by dehydration trimerization of phenylboronic acid was involved in this telomerization. When PhBneop **1x** and 'PrOD(d_8) instead of boronic acid and

Fig. 3 | **The scope of dienes and transformations of telomers. a** The scope of dienes. **b** The transformations of telomers **5a** and **5l**. Conditions: **1d** (0.20 mmol), **2** (0.80 mmol), Ni(COD)₂ (5 mol%), **L6** (5 mol%), DABCO (0.5 equiv.), ⁱPrOH (2.0 equiv.), **1**,4-dioxane (1.0 mL), rt, 18 h. Regioselectivity and diastereoselectivity (dr)

was determined by ¹H NMR analysis. "2 (0.40 mmol). ^bMinor product is *T-H* product, combined yield of **9** and **10** was given. 'Minor product is branched product, combined yield was given.

Conditions: 1a (0.20 mmol), 2a (0.80 mmol), Ni(COD)₂ (5 mol%), L6 (5 mol%), DABCO (0.5 equiv.), PrOH (2.0 equiv.), 1,4-dioxane (1.0 mL). Yields and selectivities were determined by GC-FID analysis of crude mixture with mesitylene as the internal standard.

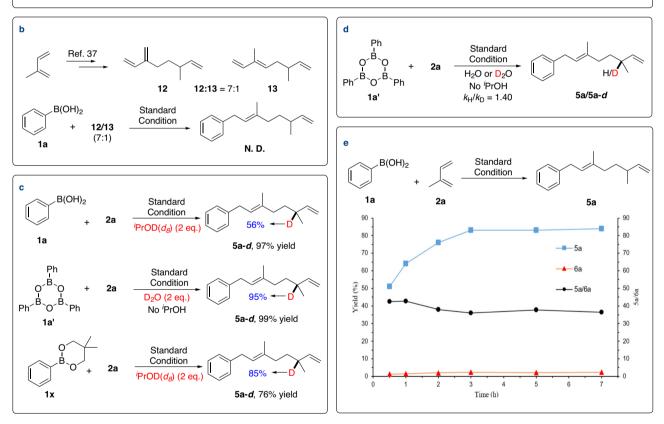


Fig. 4 | Mechanistic studies. a Control experiments. b Linear dimerization of isoprene. c Isotopic labelling studies. d Kinetic isotope effect (KIE) experiment. e Kinetic studies.

ⁱPrOH were added into the reaction, the target product **5a-d** was yielded with higher deuterium (85%) than PhB(OH)₂ **1a** because there is no active hydrogen atom in **1x**. The isotopic labelling study of PhBneop supports that protonation from ⁱPrOH could be involved in this telomerization in the absence of water. Moreover, a kinetic isotope effect (KIE) experiment using H₂O and D₂O (k_H/k_D =1.40) suggested that protonation was less likely to be the rate-determining step (Fig. 4d). Then, kinetic studies were further executed to reveal the reaction process (Fig. 4e). The yields of the stereoisomers **5a** and **6a** increased over time, but their corresponding ratio (**5a/6a**) remained constant

during the reaction. These results demonstrate that no isomerization is engaged under the investigated conditions.

Next, we turned our attention to understanding the role of DABCO. The ¹¹B NMR studies of control experiments were performed to confirm the interaction between organoborons and DABCO. A significant upfield shift was observed in ¹¹B NMR due to the interaction of boronic acid **1a** and DABCO (Please see Supplementary Information for details, Supplementary Figs. 10 and 11). However, there is no two signals observed by the variable temperature experiments. It is probably attributed to the quickly tautomerism

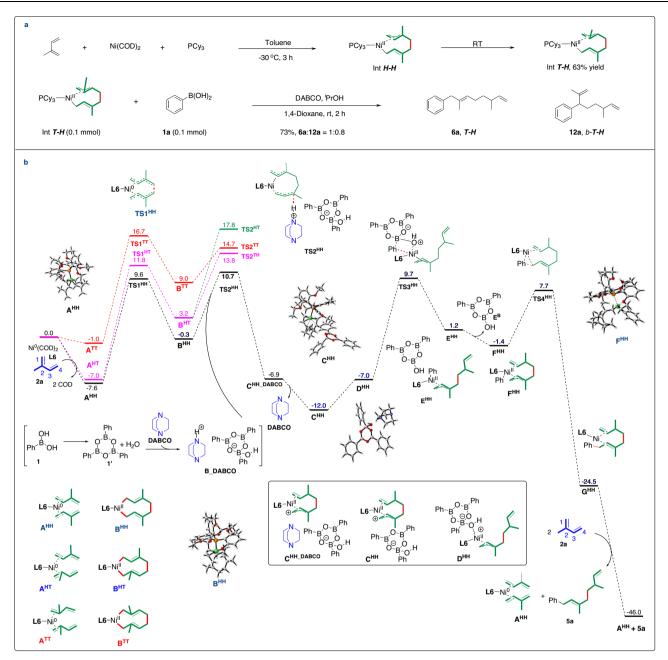


Fig. 5 | The capture of intermediate and reaction energy profiles. a The capture and transformation of Ni(II) species. b Reaction energy profiles for the arylative telomerization of isoprene.

equilibrium of the adduct **I**. When the temperature is below 0 °C, the adduct **I** precipitated due to solubility issues, thus no obvious signal was observed in ¹¹B NMR spectra (Please see Supplementary Information for details, Supplementary Fig. 12). No chemical shift was observed in the reaction of PhBpin with DABCO (Supplementary Fig. 13). Based on previous reports^{31,32,48–50}, a nickelacycle species was synthesized from Ni(COD)₂, PCy₃ and isoprene in Toluene. A quick rearrangement of Int *H-H* occurred to give Int *T-H* at room temperature. The stoichiometric transformation of Int *T-H* with **1a** gave the *T-H* telomers **6a** and **12a** with 73% yield (**6a:12a** = 1:0.8) (Fig. 5a). This result suggests Int *H-H* and *T-H* can be the intermediates for the telomerization of isoprene.

To further examine the validity of proposed mechanism, a density functional theory calculation of telomerization was performed (Fig. 5b, please see Supplementary Information and Supplementary Data 1 for details). Computational results showed that Ni^o could coordinate with

two molecules of isoprene 2a in the presence of L6, generating three potential complexes (A^{HH} , A^{HT} , and A^{TT}) through different coordinations. The complexes A^{HH} and A^{HT} are more stable than A^{TT} , obviously. Through transition state $TS1^{HH}$ ($\Delta G_1^{\uparrow}=17.2\,\mathrm{kcal}\,\mathrm{mol}^{-1}$), the oxidative cyclometallation occurs to generate thermodynamically more stable nickelacycle B^{HH} . In contrast, kinetically unfavorable cyclometallation of A^{HT} and A^{TT} need to overcome higher free energy barriers, $18.8\,\mathrm{kcal}\,\mathrm{mol}^{-1}$ (via $TS1^{HT}$) and $17.7\,\mathrm{kcal}\,\mathrm{mol}^{-1}$ (via $TS1^{TT}$), respectively. Meanwhile, the adduct I, resulting from DABCO and PhB(OH)2, can act as a proton source. Protonation of the intermediate B^{HH} with the adduct I gives the cationic Ni(II) intermediate $C^{HH,DABCO}$. The release of DABCO from $C^{HH,DABCO}$ generates complex C^{HH} . A subsequent transmetalation of C^{HH} occurs to deliver Ar-Ni(II) species E^{HH} , which is proposed as rate limiting step ($\Delta\Delta G^{\dagger}=21.7\,\mathrm{kcal/mol}$). Then, a recoordination of C^{HH} delivers the intermediate E^{HH} . Finally, a reductive elimination of E^{HH} delivers the intermediate E^{HH} , which is

subsequently displaced by 2a to release product 5a and regenerate the catalytically active A^{HH} species.

Discussion

In conclusion, a practical strategy has been developed for arylative telomerization of isoprene with organoboron compounds under Ni catalysis. The using of bulky mono-phosphine ligand not only promotes the nickel catalysis arylative telomerization of isoprene but also tackles the challenge of simultaneous control of the chemo- and regioselectivities in this protocol. Various structurally diverse 1,3-dienes and organoboron compounds were well tolerated to support further derivatizations and potential application. Meanwhile, preliminary mechanistic studies support the proposed catalytic pathways. Moreover, this protocol provides a practical strategy for the creation of unnatural aryl-substituted monoterpenoids. It is anticipated that this protocol will arouse widespread interest among researchers in terpene transformations and serve as an efficient method for terpenoid synthesis.

Methods

General procedures for arylative telomerization of isoprene

In glove box, a sealed tube was charged with **1** (0.20 mmol), **2** (0.80 mmol), Ni(COD)₂ (2.8 mg, 5 mol%), **L6** (5.3 mg, 5 mol%), DABCO (11.2 mg, 0.5 equiv.), 1 PrOH (31 μ L, 2.0 equiv.), and anhydrous 1,4-dioxane (1.0 mL). The reaction tube was sealed with a Teflon screw cap, removed from the glove box. Then, the reaction mixture was stirred at room temperature for 18 h. Upon completion, the mixture was filtered through a short pad of celite, concentrated in vacuo, and purified by silica chromatography to afford the products.

Data availability

The authors declare that the data supporting the findings of this study, including experimental details and compound characterization, are available within the article and its Supplementary Information files. All data are also available from the corresponding author upon request.

References

- McDonald, R. I., Liu, G. & Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. *Chem. Rev.* 111, 2981–3019 (2011).
- Dhungana, R. K., Kc, S., Basnet, P. & Giri, R. Transition metalcatalyzed dicarbofunctionalization of unactivated olefins. *Chem. Rec.* 18, 1314–1340 (2018).
- Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).
- Smutny, E. J. Oligomerization and dimerization of butadiene under homogeneous catalysis. Reaction with nucleophiles and the synthesis of 1,3,7-octatriene. J. Am. Chem. Soc. 89, 6793–6794 (1967)
- Takahashi, S., Shibano, T. & Hagihara, N. The dimerization of butadiene by palladium complex catalysts. *Tetrahedron Lett.* 8, 2451–2453 (1967).
- Murai, S. et al. Efficient catalytic addition of aromatic carbonhydrogen bonds to olefins. *Nature* 366, 529–531 (1993).
- Dong, Z., Ren, Z., Thompson, S. J., Xu, Y. & Dong, G. Transition-metal-catalyzed C-H alkylation using alkenes. *Chem. Rev.* 117, 9333–9403 (2017).
- Wang, X.-X., Lu, X., Li, Y., Wang, J.-W. & Fu, Y. Recent advances in nickel-catalyzed reductive hydroalkylation and hydroarylation of electronically unbiased alkenes. Sci. China Chem. 63, 1586–1600 (2020).
- Xiao, L.-J. et al. Nickel(0)-catalyzed hydroarylation of styrenes and 1,3-dienes with Organoboron Compounds. *Angew. Chem. Int. Ed.* 57, 461–464 (2017).

- Lv, X.-Y., Fan, C., Xiao, L.-J., Xie, J.-H. & Zhou, Q.-L. Ligand-enabled Ni-catalyzed enantioselective hydroarylation of styrenes and 1,3dienes with arylboronic acids. CCS Chem. 1, 328–334 (2019).
- Chen, Y.-G. et al. Nickel-catalyzed enantioselective hydroarylation and hydroalkenylation of styrenes. J. Am. Chem. Soc. 141, 3395–3399 (2019).
- Lv, H., Xiao, L.-J., Zhao, D. & Zhou, Q.-L. Nickel(0)-catalyzed linearselective hydroarylation of unactivated alkenes and styrenes with aryl boronic acids. *Chem. Sci.* 9, 6839–6843 (2018).
- He, Y., Liu, C., Yu, L. & Zhu, S. Ligand-enabled nickel-catalyzed redox-relay migratory hydroarylation of alkenes with arylborons. Angew. Chem. Int. Ed. 59, 9186–9191 (2020).
- Marcum, J. S., Taylor, T. R. & Meek, S. J. Enantioselective synthesis of functionalized arenes by nickel-catalyzed site-selective hydroarylation of 1,3-dienes with aryl boronates. *Angew. Chem. Int. Ed.* 59, 14070–14075 (2020).
- Wang, D.-M., Feng, W., Wu, Y., Liu, T. & Wang, P. Redox-neutral nickel(li) catalysis: hydroarylation of unactivated alkenes with arylboronic acids. *Angew. Chem. Int. Ed.* 59, 20399–20404 (2020).
- Li, Z.-Q. et al. Ligand-controlled regiodivergence in nickelcatalyzed hydroarylation and hydroalkenylation of alkenyl carboxylic acids. *Angew. Chem. Int. Ed.* 59, 23306–23312 (2020).
- Li, Z.-Q., Apolinar, O., Deng, R. & Engle, K. M. Directed Markovnikov hydroarylation and hydroalkenylation of alkenes under nickel catalysis. *Chem. Sci.* 12, 11038–11044 (2021).
- 18. Chen, K. et al. Switch in selectivities by dinuclear nickel catalysis: 1,4-hydroarylation of 1,3-dienes to *Z*-olefins. *J. Am. Chem. Soc.* **145**, 24877–24888 (2023).
- Kozhummal, H., Das, S. K., Cooze, C. & Lundgren, R. J. Enantio- and Z-selective δ-hydroarylation of aryl-substituted 1,3-dienes via Rhcatalyzed conjugate addition. Angew. Chem. Int. Ed. 63, e202406102 (2024).
- 20. Nishimura, T., Ebe, Y. & Hayashi, T. Iridium-catalyzed [3 + 2] annulation of cyclic *N*-sulfonyl ketimines with 1,3-dienes via C-H activation. *J. Am. Chem.* Soc. **135**, 2092–2095 (2013).
- 21. Nishimura, T., Nagamoto, M., Ebe, Y. & Hayashi, T. Enantioselective [3 + 2] annulation via C-H activation between cyclic *N*-acyl ketimines and 1,3-dienes catalyzed by iridium/chiral diene complexes. *Chem. Sci.* **4**, 4499–4504 (2013).
- Perry, G. J. P., Jia, T. & Procter, D. J. Copper-catalyzed functionalization of 1,3-dienes: hydrofunctionalization, borofunctionalization, and difunctionalization. ACS Catal. 10, 1485–1499 (2019).
- Keim, W. & Röper, M. Terpene amine synthesis via palladiumcatalyzed isoprene telomerization with ammonia. J. Org. Chem. 46, 3702–3707 (1980).
- 24. Hidai, M. et al. Palladium-catalyzed asymmetric telomerization of isoprene. preparation of optically active citronellol. *J. Organomet. Chem.* **232**, 89–98 (1982).
- Keim, W., Kurtz, K.-R. & Röper, M. Palladium catalyzed telomerization of isoprene with secondary amines and conversion of the resulting terpene amines to terpenols. *J. Mol. Catal.* 20, 129–138 (1983).
- Maddock, S. M. & Finn, M. G. Palladium-catalyzed head-to-head telomerization of isoprene with amines. *Organometallics* 19, 2684–2689 (2000).
- Leca, F. & Réau, R. 2-Pyridyl-2-phospholenes: new P,N ligands for the palladium-catalyzed isoprene telomerization. J. Catal. 238, 425–429 (2006).
- Jackstell, R., Grotevendt, A., Michalik, D., Firdoussi, L. E. & Beller, M. Telomerization and dimerization of isoprene by in situ generated palladium-carbene catalysts. J. Organomet. Chem. 692, 4737–4744 (2007).
- 29. Gordillo, A., Pachón, L. D., de Jesus, E. & Rothenberg, G. Palladiumcatalysed telomerisation of isoprene with glycerol and

- polyethylene glycol: a facile route to new terpene derivatives. *Adv. Synth. Catal.* **351**, 325–330 (2009).
- Maluenda, I. et al. Room temperature, solventless telomerization of isoprene with alcohols using (N-heterocyclic carbene)-palladium catalysts. Catal. Sci. Technol. 5, 1447–1451 (2015).
- Colavida, J. et al. Regioselectivity control in Pd-catalyzed telomerization of isoprene enabled by solvent and ligand selection. ACS Catal. 10, 11458–11465 (2020).
- Zhao, C.-Y. et al. Bioinspired and ligand-regulated unnatural prenylation and geranylation of oxindoles with isoprene under Pd catalysis. Angew. Chem. Int. Ed. 61, e202207202 (2022).
- Lerma-Berlanga, B., Cerón-Carrasco, J. P. & Leyva-Pérez, A. Diverted telomerization reaction with aryl boronic derivatives: expeditious synthesis of aryl-substituted 1,6- and 1,7-dienes. *Organometallics* 43, 1827–1838 (2024).
- Faßbach, T. A., Vorholt, A. J. & Leitner, W. The telomerization of 1,3-dienes – a reaction grows up. *ChemCatChem* 11, 1153–1166 (2019).
- 35. Krotz, A., Vollmüller, F., Stark, G. & Beller, M. Salt-free C–C coupling reactions of arenes: palladium-catalyzed telomerization of phenols. *Chem. Commun.* **37**, 195–196 (2001).
- 36. Klein, E., Thomel, F. & Struwe, H. Apoterpene und aposesquiterpene durch cooligomerisation von methacrylsaure-methylester mit Isopren und Myrcen an einem homogenen nickel-katalysator. Ein Beispiel für die Produktsteuerung durch Störung von Zyklen. Liebigs Ann. Chem. 1976, 352–356 (1976).
- Jolly, P. W. 56.4 Nickel catalyzed oligomerization of 1,3-dienes and related reactions. Compr. Organomet. Chem. 671–711 https://doi. org/10.1016/B978-008046518-0.00118-5 (1982).
- Hoberg, H., Gross, S. & Milchereit, A. Nickel(0)-catalyzed production of a functionalized cyclopentanecarboxylic acid from 1,3-butadiene and CO₂. Angew. Chem. Int. Ed. 26, 571–572 (1987).
- Hoberg, H., Peres, Y., Milchereit, A. & Gross, S. Nickel(0)-induzierte Cc-verknüpfung zwischen CO₂, und 1,3-butadien Zu C₉-mono- oder C₁₈-di-carbonsäuren. J. Organomet. Chem. 345, C17–C19 (1988).
- Zhang, G. et al. Nickel-catalysed asymmetric heteroarylative cyclotelomerization of isoprene. Nat. Catal. 5, 708–715 (2022).
- Hu, Y.-C., Ji, D.-W., Zhao, C.-Y., Zheng, H. & Chen, Q.-A. Catalytic prenylation and reverse prenylation of indoles with isoprene: regioselectivity manipulation through choice of metal hydride. *Angew. Chem. Int. Ed.* 58, 5438–5442 (2019).
- Yang, J. et al. Cobalt-catalyzed hydroxymethylarylation of terpenes with formaldehyde and arenes. Chem. Sci. 10, 9560–9564 (2019).
- Kuai, C.-S. et al. Ligand-regulated regiodivergent hydrosilylation of isoprene under iron catalysis. *Angew. Chem. Int. Ed.* 59, 19115–19120 (2020).
- 44. Li, Y. et al. Acid-catalyzed chemoselective C- and O- prenylation of cyclic 1,3-diketones. Chin. J. Catal. 41, 1401–1409 (2020).
- Jiang, W.-S. et al. Orthogonal regulation of nucleophilic and electrophilic sites in Pd-catalyzed regiodivergent couplings between indazoles and isoprene. *Angew. Chem. Int. Ed.* 60, 8321–8328 (2021).
- Zhang, G. et al. Ni-catalyzed unnatural prenylation and cyclic monoterpenation of heteroarenes with isoprene. *Chin. J. Catal.* 49, 123–131 (2023).
- Tsuji, J., Yamakawa, T., Kaito, M. & Mandai, T. Formation of a terminal conjugated diene system by the palladium catalyzed elimination reactions of allylic acetates and phenyl ethers. *Tetrahedron Lett.* 24, 2075–2078 (1978).

- Tschan, M. J.-L. et al. Efficient bulky phosphines for the selective telomerization of 1,3-butadiene with methanol. *J. Am. Chem. Soc.* 132, 6463–6473 (2010).
- Benn, R. et al. The stoichiometric reaction of dienes with ligand modified zerovalent-nickel systems. J. Organomet. Chem. 279, 63–86 (1985).
- 50. Barnett, B. et al. The dimerization of 1,3-dienes with the nickel-ligand catalyst: evidence for a multi-step mechanism. *Tetrahedron Lett.* **13**, 1457–1460 (1972).

Acknowledgements

Financial support from Dalian Outstanding Young Scientific Talent (2020RJ05), and National Natural Science Foundation of China (22071239, 22201281, and 22371275) is greatly appreciated.

Author contributions

Q.-A.C. conceived and supervised the project. Q.-A.C. and X.-Y.W. designed the experiments. B.-Z.C.; S.-Y.X.; X.-T.L.; Y.L.; D.-W.J. performed the experiments and analyzed the data. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-025-64893-y.

Correspondence and requests for materials should be addressed to Qing-An Chen.

Peer review information *Nature Communications* thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2025