
Nature Synthesis | Volume 2 | April 2023 | 338–347 338

nature synthesis

Article https://doi.org/10.1038/s44160-022-00219-w

Electrochemical gold-catalysed 
biocompatible C(sp2)–C(sp) coupling

Hao Liang, Yilitabaier Julaiti, Chuan-Gang Zhao & Jin Xie     

Gold-catalysed oxidative coupling reactions often require strong oxidants 
because of the high redox potential of Au(i)/Au(iii) (1.41 V versus the 
saturated calomel electrode), resulting in poor reaction economy and 
functional group compatibility. Here we report a dinuclear gold-catalysed 
C(sp2)–C(sp) coupling reaction between structurally diverse alkynes and 
arylhydrazines under electrochemical conditions. This approach provides 
a practical oxidative C–C coupling reaction that avoids the use of synthetic 
oxidants and instead produces H2. This method exhibits excellent functional 
group compatibility towards compounds such as alcohols, amines, sulfides 
and electron-rich arenes, which possess functional groups sensitive 
to oxidizing agents. This synthetic robustness is further shown by the 
successful late-stage modification of different kinds of alkynes tethered to 
biomolecules such as amino acids, peptides, nucleotides and saccharides. 
Mechanistic studies suggest a first aryl radical oxidative addition step with 
Au(i), followed by anodic oxidation to generate the highly electrophilic Ar–
Au(iii) species for subsequent σ-activation of alkynes.

Transition metal-catalysed carbon–carbon bond formation is one of 
the core components in organic synthesis and serves as the cornerstone 
for the facile construction of drugs and multifunctional materials1. In 
recent years, gold-catalysed oxidative carbon–carbon coupling has 
become an emerging synthetic method, but the high Au(i)/Au(iii) 
redox potential of 1.41 V requires the use of strong synthetic oxidants 
to achieve such a change in valency2–12. Despite major efforts, the use 
of sacrificial oxidants in such reactions hardly supports the synthetic 
economy and functional group compatibility of gold-catalysed oxida-
tive couplings. Consequently, the development of gold-catalysed C–C 
coupling in the absence of external oxidants has attracted considerable 
attention13–32.

The alkyne motif is an important and versatile functional group 
in organic chemistry with which one can not only readily construct a 
rich library of organic compounds, but can also open a new door to 
target molecules that are widely useful in drug discovery and materials 
research (Fig. 1a)33. With the acidity of terminal alkynes, the construc-
tion of C(sp3)–C(sp) bonds can be achieved by nucleophilic substitution 
or addition from terminal alkynes. The formation of the C(sp2)–C(sp) 
bond is more challenging, and Pd/Cu co-catalysed Sonogashira 

coupling has emerged as the most effective strategy34,35. However, the 
high reactivity of palladium might compromise the functional group 
compatibility of these reactions and thus potentially limit their appli-
cation. To overcome this inherent limitation, gold-catalysed oxidative 
C(sp2)–C(sp) reactions have been developed, but with strong external 
oxidants, such as PhI(OAc)2

36–42. In the absence of external oxidants, 
gold-catalysed C(sp2)–C(sp) couplings of either terminal alkynes or 
trimethylsilyl-protected alkynes with aryldiazonium salts were suc-
cessfully developed as an important upgrade to previous approaches 
(Fig. 1b)43–45. While powerful, the aryldiazonium salts are strong elec-
trophiles that accept electrons, thus there is an inherent limit to the 
redox-sensitive functional groups that can survive these conditions. 
Consequently, we wondered whether the aryl radical can be generated 
in situ from commercially available arylhydrazines under mild reaction 
conditions46, avoiding the direct handling of explosive aryldiazonium 
salts for gold-catalysed C(sp2)–C(sp) couplings.

Because electrochemical reactions can tune the oxidation process, 
they have been increasingly explored in transition metal-catalysed oxi-
dative coupling47–53. In 2019, Shi et al.54 realized the first electrochemical 
gold-catalysed C(sp)–C(sp) coupling of two different alkynes using C/

Received: 23 June 2022

Accepted: 5 December 2022

Published online: 12 January 2023

 Check for updates

State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center 
(ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.  e-mail: xie@nju.edu.cn

http://www.nature.com/natsynth
https://doi.org/10.1038/s44160-022-00219-w
http://orcid.org/0000-0003-2600-6139
http://crossmark.crossref.org/dialog/?doi=10.1038/s44160-022-00219-w&domain=pdf
mailto:xie@nju.edu.cn


Nature Synthesis | Volume 2 | April 2023 | 338–347 339

Article https://doi.org/10.1038/s44160-022-00219-w

(3′) was formed and the free amino group—a very sensitive functional 
group in the presence of strong oxidants—was tolerated well. The use of 
dichloromethane or MeOH as solvents decreased the reaction efficiency 
(entries 2 and 3). The change of electrolyte from n-Bu4NOAc to n-Bu4NPF6 
or n-Bu4NBF4 caused the yield of the desired C(sp2)–C(sp) coupling 
reaction to be diminished, possibly because n-Bu4NOAc can stabilize 
the high-valence gold intermediate54 (entries 4 and 5). The use of other 
gold complexes with the ligands shown in Fig. 2 decreased the reaction 
yield (entries 6–11). When a constant current of 9 mA was employed, a 
moderate yield of 44% was obtained (entry 12). In addition, it was found 
that when the cathode was replaced with platinum or graphite felt the 
reaction could not be promoted (entries 13 and 14). The control experi-
ments show that the C(sp2)–C(sp) coupling between 2-ethynylaniline (1) 
and 4-hydrazinylbenzonitrile (2) cannot occur in the absence of either 
the gold catalyst or the electric voltage (entries 15 and 16).

Reaction scope
With the established reaction conditions (Table 1, entry 1) in hand, 
we investigated the scope of the reaction. As shown in Table 2, both 
aromatic alkynes and aliphatic alkynes are generally competent cou-
pling partners in the electrochemical gold-catalysed C(sp2)–C(sp) 
coupling. For the aromatic alkynes, both electron-rich and electron-
poor functional groups on the phenyl groups tolerated the reaction 
conditions well, leading to the production of desired products (4–14) 
in satisfactory yields. Versatile halogens, such as Br (7) remain unaf-
fected during the coupling process and could provide a platform for 
downstream modification. Importantly, we found that a wide range 

Pt electrodes (Fig. 1c). Recently, the same group has reported an inter-
esting C(sp2)–C(sp2) coupling between arylboronic acids and C(sp2)–
C(sp) coupling between arylboronic acids and terminal alkynes using 
C/Pt electrodes with air as the sole oxidant55. Following our continual 
interest in gold-catalysed coupling reactions56–58, herein we report an 
electrochemical gold-catalysed C(sp2)–C(sp) coupling of highly func-
tionalized alkynes with arylhydrazines using inexpensive reticulated 
vitreous carbon/Ni electrodes with H2 evolution (Fig. 1d). The hydrogen 
evolution supplants the use of oxidants and, when compared with its 
precedents, endows this protocol with an excellent functional group 
compatibility and chemoselectivity. Remarkably, the electrochemi-
cal reduction of Au(i) to Au(0) with hydrogen evolution is difficult to 
suppress in the absence of oxidants and we have found that the use of 
a gold-catalysed process with a matching anodic oxidation rate is an 
important factor.

Optimization of reaction conditions
To initiate this study, the electron-rich 2-ethynylaniline (1) and 4-hydrazi-
nylbenzonitrile (2) were selected as the model reaction to optimize the 
standard conditions (Table 1). Notably, 1,4-heteroatom-based (O, S, N) 
alkynes are prone to undergoing gold-catalysed cyclisation59–61. It was 
found that the desired coupling product (3) can be obtained in 63% 
yield with bis(diphenylphosphino)methane-(AuCl)2 (dppm(AuCl)2) 
(Fig. 2) as the gold catalyst in an ElectraSyn 2.0 cell (Table 1, entry 1). We 
envisioned that the additive 4,7-diphenyl-1,10-phenanthroline could 
serve as a transient ligand to stabilize the generated high-valency gold 
species45. Under these standard conditions, no cyclisation byproduct 
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Fig. 1 | The importance of alkynes in organic synthesis (appealing for gold-
catalysed C(sp)–C(sp2) coupling reactions and biocompatibility). a, The 
alkyne motif as a representative functional group in biologically important 
molecules. b, Previous work on gold-catalysed C(sp2)–C(sp) coupling with 
aryldiazonium salts43,44,45. The substrate compatibility is usually limited. c, The 
seminal work of Shi on electrochemical gold-catalysed C(sp)–C(sp) cross-
coupling reactions without oxidants, showing the feasibility of gold-catalysed 

organic reactions under electrochemical conditions54. d, This work. Gold-
catalysed biomolecule-compatible C(sp2)–C(sp) coupling with H2 evolution. 
A range of versatile functional groups and bio-additives are compatible in this 
electrochemical gold-catalysed coupling reaction. bpy, 2,2-bipyridine; RT, room 
temperature; RVC, reticulated vitreous carbon; Tf, trifluoromethylsulfonyl; TMS, 
trimethylsilyl.
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of electron-rich 2-ethynylanilines can undergo this electrolytic cou-
pling, giving rise to the expected products (15–22) in 55–69% yield. The 
relatively oxidant-sensitive sulfide can also be tolerated under mild 
conditions and delivers the coupling product (23) in 60% yield. The 
success of these electron-rich anilines and oxidant-sensitive sulfides 
shows the excellent functional group tolerance of this protocol, which 
is difficult to realize in the presence of external oxidants. Alkynes with 
heteroaromatic rings, such as thiophene (13) and pyridine (14) are also 
good coupling partners.

Subsequently, the reactions of a broad range of aliphatic alkynes 
were examined under the optimal conditions. It was found that a 

three-membered ring can tolerate the conditions well, affording the 
product (25) in 45% yield. Interestingly, hydroxyl-tethered aliphatic 
alkynes can smoothly undergo the expected C(sp2)–C(sp) coupling to 
furnish products (27, 28 and 33–38) in moderate yields. It was found 
that hydroxyl groups at C4, C5 and C6 are compatible with the reac-
tion and are retained because these products (33–38) do not further 
convert into the corresponding ethers, showing the tolerance of 
hydroxyl groups in the reaction. A series of useful functional groups, 
such as ester (29) and acetal (30 and 31) remain intact during the 
oxidative coupling. A conjugated enyne is a suitable coupling partner 
and affords the desired product (32) in 48% yield.

This electrochemical gold-catalysed C(sp2)–C(sp) coupling pro-
tocol was applied to a series of complex alkynes. It was found that the 
reaction enjoys good functional group compatibility, and a variety of 
alkynes with different frameworks tolerate the conditions well, giving 
rise to the target products (39–44) in moderate yields. Regarding the 
scope of aromatic hydrazines, we found that hydrazines with para 
substituents such as halogen (45 and 46), electron-rich methoxy (47), 
electron-deficient trifluoromethyl (48) and ester groups (49 and 50) are 
all competent substrates. These same functional groups at the meta or 
ortho positions were found to have little influence on the reaction effi-
ciency, affording the products (51–56) in synthetically acceptable yields.

Late-stage modification of complex alkynes
After obtaining these results, we carried out gold-catalysed coupling 
reactions with a series of complex alkynes bearing several biomolecular 

Table 1 | Optimization of reaction conditions
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Entry Electrolyte Gold catalyst (10 mol%) Solvent Yield (%)a

1 nBu4NOAc dppm(AuCl)2 MeCN 63

2 nBu4NOAc dppm(AuCl)2 CH2Cl2 12

3 nBu4NOAc dppm(AuCl)2 MeOH Trace

4 nBu4NPF6 dppm(AuCl)2 MeCN Trace

5 nBu4NBF4 dppm(AuCl)2 MeCN 15

6 nBu4NOAc dppm(AuOTs)2 MeCN 25

7 nBu4NOAc dppe(AuCl)2 MeCN 33

8 nBu4NOAc BINAP(AuCl)2 MeCN 11

9 nBu4NOAc XPhosAuCl MeCN 9

10 nBu4NOAc IPrAuCl MeCN 8

11 nBu4NOAc dppp(AuCl)2 MeCN 18

12b nBu4NOAc dppm(AuCl)2 MeCN 44

13c nBu4NOAc dppm(AuCl)2 MeCN 57

14d nBu4NOAc dppm(AuCl)2 MeCN 35

15 nBu4NOAc None MeCN ND

16e nBu4NOAc dppm(AuCl)2 MeCN ND
aThe isolated yield is shown. bConstant current of 9 mA. cPt as cathode. dGraphite felt as the cathode. eNo current. Reaction conditions: gold catalyst (10 mol%), 1 (0.3 mmol), 2 (1.5 mmol), 
4,7-diphenyl-1,10-phenanthroline (40 mol%), 2,6-di-tert-butylpyridine (1.5 equiv.), n-Bu4NOAc (1.2 mmol) and MeCN (3 ml) in an ElectraSyn 2.0 cell with a constant current of 5 mA and ambient 
temperature for 10 h. ND, none detected; BINAP, 1.1'-binaphthyl-2.2'-diphemyl phosphine; dppe, 1,2-bis(diphenylphosphino)ethane; dppp, 1,3-bis(diphenylphosphino)propane; XPhos, 
2-(dicyclohexylphosphino)-2',4',6'-tri(isopropyl)biphenyl.
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Fig. 2 | Different ligands for the gold catalysts. Cy, cyclohexyl; iPr, isopropyl.
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Table 2 | Reaction scope of gold-catalysed C(sp2)–C(sp) coupling
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Standard conditions: dppm(AuCl)2 (10 mol%), alkyne (0.3 mmol), arylhydrazines (1.5 mmol), 4,7-diphenyl-1,10-phenanthroline (40 mol%), n-Bu4NOAc (1.2 mmol), 2,6-di-tert-butylpyridine 
(1.5 equiv.) and MeCN (3 ml) in an ElectraSyn 2.0 cell at a constant current of 5 mA and room temperature for 10 h.
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skeletons (Table 3) and found that amino acid-derived alkynes can 
uniformly undergo the expected C(sp2)–C(sp) coupling, producing the 
products (57–62) in yields of 40–58%. When the derivatives of adeno-
sine (63) and uridine (64) were added to the reaction, these nitrogen-
containing alkynes tolerated the electrochemical reaction conditions 
well. Saccharide-containing alkynes are also efficient substrates in this 
gold-catalysed electrochemical C(sp2)–C(sp) coupling and afford the 
products 65 and 66 in moderate yields. To demonstrate the scalability 

of this gold-catalysed coupling reaction, we completed the reaction on 
a 5 mmol scale, giving the expected product (66) in 48% yield (1.17 g).

Investigation of the compatibility of bio-
additives
As shown in Table 3, it was found that this gold-catalysed coupling has 
good functional group compatibility, and we questioned whether it 
can tolerate different kinds of biochemically important molecules62–64. 

Table 3 | Substrate scope of biomolecule-tethered alkynes
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butylpyridine (1.5 equiv.) and MeCN (3 ml) in an ElectraSyn 2.0 cell at a constant current of 5 mA and room temperature for 10 h.
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When a series of bio-additives, such as monosaccharides, amino acids, 
peptides, adenosine triphosphate, biotin and nucleotides were added 
to the reaction, they were found to influence the reaction very little 
and could still be detected when the coupling process was complete. 
Besides these small molecules, when some core macromolecules 
in organisms, such as DNA, RNA, albumin, chlorophyll, starch and 
enzymes were included as bio-additives in the gold-catalysed C(sp2)–
C(sp) coupling, the desired coupling products (3) were obtained in 

satisfactory yields (Table 4). These experiments suggest the possible 
biocompatibility of the gold-catalysed electrochemical reaction system 
towards a series of bio-additives.

Reaction mechanism
To gain evidence that the mechanism of the gold-catalysed elec-
trochemical C(sp2)–C(sp) coupling is or is not a radical pathway, 
2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was added to the 
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Fig. 3 | Mechanistic studies. Standard conditions: dppm(AuCl)2 (10 mol%), 
alkyne (0.3 mmol), hydrazines (1.5 mmol), 4,7-diphenyl-1,10-phenanthroline 
(40 mol%), 2,6-di-tert-butylpyridine (1.5 equiv.), n-Bu4NOAc (1.2 mmol) and 
MeCN (3 ml) in an ElectraSyn 2.0 cell at a constant current of 5 mA and room 
temperature for 10 h. a, Radical trapping experiment. TEMPO (5 equiv.) was 
added to the reaction of 67 and 2 under standard conditions and the trapped 
product 68 was detected by high-resolution mass spectrometry (HRMS). 
b, Radical cyclisation experiment. Hydrazine 69 was subjected to standard 
conditions, and the five-membered cyclisation product 71 was obtained. c, 
Parallel kinetic isotope effect experiment. 1-ethynyl-4-methoxybenzene (67) 

and d-1-ethynyl-4-methoxybenzene (67-D) were employed under standard 
conditions, respectively. With a reaction time of 4 h, the kinetic isotope effect 
was calculated as 1.04. d, Hammett plot of substituted hydrazine derivatives. 
The electronic effect of different substituents on the reaction rate was examined 
in three parallel experiments. kR, reaction rate constants with benzene ring 
bearing different substituents; kH, reaction rate constant without substituent on 
the benzene ring. e, Cyclic voltammetry experiments. Ag/Ag+ (Ag wire in 0.01 M 
AgNO3 with 0.1 M nBu4NOAc in CH3CN) was used as the reference electrode at a 
scan rate of 100 mV s−1, Ep, peak potential.
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reaction of 4-hydrazinylbenzonitrile (2) with 1-ethynyl-4-methoxyben-
zene (67) (Fig. 3a). It was shown by high-resolution mass spectrometry 
analysis that the corresponding aryl radical was successfully trapped 
by TEMPO, with the reaction yield dramatically decreasing to 21%. As 

shown in Fig. 3b, when the arylhydrazine (69) containing an alkene 
tethered at the ortho position was subjected to the standard conditions, 
a cyclized five-membered ring product (71) was produced in 42% yield, 
possibly owing to the formation of aryl radical intermediate (70) in 

Table 4 | Investigation of the compatibility of bio-additives in the reaction
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situ. These results would imply that a radical process is very likely. As 
shown in Fig. 3c, the parallel kinetic isotope effect experiments using 
1-ethynyl-4-methoxybenzene (67) and D-1-ethynyl-4-methoxybenzene 
(67-D), respectively, suggested that the activation of the alkyne hydro-
gen bond might not be the rate-limiting step. Additionally, because no 
homocoupling byproducts of terminal alkynes were detected in these 
reactions, the direct σ activation of terminal alkyne with the gold(i) 
catalyst would be less likely (see Supplementary Fig. 29). The electronic 
effect of the hydrazine derivatives (such as 4-OMe, 4-Cl, 4-CF3 and 4-CN) 
on the reaction rate was further verified by Hammett studies (Fig. 3d). 
The positive slope (ρ = 0.9774) in the Hammett plot might suggest that 
electron-deficient aryl intermediates would be more favourable during 
the oxidation addition to the gold catalyst. As illustrated in Fig. 3e, the 
cyclic voltammetry experiments show that the oxidation potential of 
phenylhydrazine (2) is about +0.53 V (versus Ag/AgNO3) but it is slightly 
lower at +0.50 V (versus Ag/AgNO3) after the addition of a base. This 
change would suggest that the base may promote the oxidation of 
phenylhydrazine by accelerating the hydrogen transfer. It was also 
concluded that the gold catalyst employed has two obvious oxidation 
peaks, the first being AuI/AuII (Ep = +1.06 V versus Ag/AgNO3) and the 
second being AuII/AuIII (Ep = +1.41 V versus Ag/AgNO3). This makes it 
possible for the aryl radical generated in situ from phenylhydrazine 
by anodic oxidation to recombine with the AuI catalyst.

These observations led to a plausible mechanism proposed in  
Fig. 4. With the assistance of a base, aromatic hydrazines are able to 
undergo oxidation at the anode to form a highly electrophilic aryl 
radical46 that can recombine with the Au(i) catalyst to form an interme-
diate (73) in which the 4,7-diphenyl-1,10-phenanthroline ligand further 
stabilizes the high-valence gold species. Single-electron oxidation 
of this intermediate (74) generates Ar–Au(iii), which would activate 
the terminal alkynes in a σ activation manner65. Finally, rapid reduc-
tive elimination from the high-valence gold species (75) delivers the 
expected C(sp2)–C(sp) coupling products. To maintain the electronic 
balance during the reaction process, the protonated base (HB+) is pos-
sibly reduced at the cathode to produce H2, which can be detected by 
gas chromatography, and the base is regenerated.

Discussion
We have developed a dinuclear gold-catalysed C(sp2)–C(sp) coupling 
reaction of good compatibility under electrochemical conditions with 
cheap reticulated vitreous carbon/Ni electrodes. A wide range of struc-
turally diverse alkynes can selectively couple with aromatic hydrazines. 

The good compatibility of this protocol towards oxidant-sensitive func-
tional groups and bio-additives makes it promising for the construction 
of C(sp2)–C(sp) bonds in complex alkynes. The use of electrochemical 
redox conditions allows for a sustainable gold-catalysed oxidative C–C 
coupling without the use of external synthetic oxidants, but instead 
by the formation of H2. This protocol represents an important step 
forward towards gold-catalysed bioadditive-compatible oxidative 
C(sp2)–C(sp) coupling in a sustainable manner.

Methods
General procedure for electrochemical gold-catalysed cou-
pling
To an ElectraSyn undivided cell (10.0 ml) equipped with a stir-
ring bar, dppm(AuCl)2 (0.03 mmol; 10 mol%), alkyne (0.30 mmol; 
1.0 equiv.), hydrazine (1.50 mmol; 5.0 equiv.), nBu4NOAc (1.20 mmol; 
4.0 equiv.) and 4,7-diphenyl-1,10-phenanthroline (0.12 mmol; 
40 mol%) are successively added. Then, CH3CN (3.0 ml) and 2,6-di-
tert-butylpyridine (0.45 mmol; 1.5 equiv.) are added with a syringe. 
The ElectraSyn vial cap equipped with an anode (reticulated vitre-
ous carbon; 4.0 cm × 0.6 cm × 0.6 cm) and a cathode (nickel foam; 
4.0 cm × 0.8 cm × 0.2 cm) is inserted into the reaction mixture solution. 
The reaction mixture is then stirred and electrolysed at a constant 
current of 5 mA at room temperature for 10 h. After completion of 
the reaction, the solvent is removed under reduced pressure and the 
resulting residue is purified by flash column chromatography on silica 
gel to afford the desired product.

Data availability
All of the data supporting the findings of this study are available within 
the article and its Supplementary Information files. Source data are 
provided with this paper.
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